تاثیر افزودن همزمان اکسیدهای (Nb2O5,Cr2O3) برریزساختار و پایداری فاز زیرکونیا درکامپوزیت Al2O3-10%ZrO2

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه مهندسی مواد و متالورژی، واحد اهواز، دانشگاه آزاداسلامی،باشگاه پژوهشگران جوان و نخبگان،

2 استاد، گروه مهندسی مواد و متالورژی، دانشگاه شهید چمران،

چکیده

این تحقیق تاثیر افزودن همزمان و جداگانه اکسیدهای نیوبیوم و کروم بر ریزساختار، پایداری فاز تتراگونال زیرکونیا و چگالی زینتر کامپوزیت آلومینا-زیرکونیا مورد مطالعه قرار گرفت. از روش متالوژی پودر برای تهیه پودر کامپوزیت های مربوطه استفاده گردید. بدین منظور از پودر های آلومینا و زیرکونیا ( با 10درصد وزنی ثابت) به عنوان مواد اصلی و از پودرهای اکسیدنیوبیوم 1 درصد وزنی و اکسیدکروم 6/0درصدوزنی به عنوان عناصر افزودنی استفاده شد. نمونه های پودری کامپوزیت ها بصورت محوری تحت فشار درون قالب قرار گرفته و سپس در دمای 1300 تا 1500 درجه سانتیگراد در محیط هوا زینتر شدند. در شناسایی فازها از پراش اشعه ایکس و برای بررسی ریزساختارها از میکروسکوپ الکترونی روبشی استفاده شد. چگالی زینتر، سختی، اندازه دانه و میزان فازهای زیرکونیا محاسبه گردید. بررسی ها ونتایج آزمون ها نشان داد که سختی و چگالی زینتر با افزودن اکسیدهای نیوبیوم و کروم افزایش قابل ملاحظه ای پیدا کرده است و چگالی و سختی نمونه ای که دارای 1 درصد وزنی اکسید نیوبیوم و 6/0 درصد وزنی اکسیدکروم است به ترتیب برابر با g/cm3 72/3 و HV 1263 بدست آمد. چگالی و سختی نمونه ها با افزودن اکسیدهای نیوبیوم و کروم افزایش و افزودن همزمان اکسیدهای نیوبیوم و کروم به نمونه آلومینا-زیرکونیا دمای زینتر حدود 100 درجه سانتیگراد کاهش یافت. اندازه دانه های آلومینا با افزون درصد وزنی از اکسیدهای نیوبیوم و کروم افزایش یافت. این میان تاثیر اکسید نیوبیوم بسیار شدیدتر بوده و موجب رشد دانه های زمینه آلومینا و همچنین ناپایداری فاز تتراگونال زیرکونیا نیز شده است.

کلیدواژه‌ها


عنوان مقاله [English]

The Effects of Simultaneous Addition of Chromium Oxide (Cr2O3) and Niobium Oxide (Nb2O5) on Microstructures and the Zirconia Phase Stability of Al2O3-10%ZrO2 Composite

نویسندگان [English]

  • hossein kharazmipoor 1
  • khalil ranjbar 2
1 MSc, Department of Materials Engineering and Metallurgy, Ahvaz branch, Islamic Azad University, Young Researchers and Elite Club
2 Professor, Department of Materials Engineering and Metallurgy, Shahid Chamran University,
چکیده [English]

The present research aimed to study the effects of simultaneous and separate addition of niobium oxide and chromium oxide on microstructures, the tetragonal zirconia phase stability, and sintered density of alumina-zirconia composite. The powder metallurgy method was used to prepare the powder of desired composites. To this end, alumina and zirconia powders (with a constant weight of 10%) were used as the main materials and 1% niobium oxide and 0.6% chromium oxide powders were applied as additives. Powdered composite samples were centrally pressurized into a mold and then were sintered at 1300-1500°C. The phases were identified using the X-ray diffraction and microstructures were studied by a scanning electron microscope. Sintered density, hardness, grain size, and the number of zirconia phases were also calculated. The results showed that hardness and sintered density substantially increase with the addition of niobium oxide and chromium oxide, as the density and hardness of the sample containing 1% niobium oxide and 0.6% chromium oxide powders were obtained 3.72 g/cm3 and 1263 HV, respectively. The density and hardness of samples increased with the addition of niobium oxide and chromium oxide. In addition, the simultaneous addition of niobium oxide and chromium oxide to alumina-zirconia composite reduced the sintering temperature by 100°C. The alumina grain size increased with the addition of a certain weight percent of niobium oxide and chromium oxide. However, the effects of niobium oxide were greater, as it caused the growth of alumina grains and instability of the tetragonal zirconia phase.

کلیدواژه‌ها [English]

  • alumina-zirconia composite
  • chromium oxide
  • niobium oxide
  • tetragonal phase
  • sinter
 [1] A. Azhar, and L. Chun Choong, “Effects of Cr2O3 Addition on the Mechanical Properties, Microstructure and Wear Performance of Zirconia Toughened-Alumina (ZTA) CuttingInserts”, Journal of Alloys and Compounds, Vol. 513, PP. 91 – 96, (2012).
[2] D. Casellas, “Fracture Toughness of Alumina and ZTACeramics: Microstructural Coarsening Effects”, Journal of Materials Processing Technology, Vol. 143-144, PP. 148 – 152, (2003).
[3] N.A. Rejab, and A. Azhar, “The Relationship between Microstructure and Fracture Toughness of Zirconia Toughened Alumina (ZTA) Added With MgO and CeO2”, Intertional Journal of Refractory Metals and Hard Materials, Vol. 41, PP. 522 – 530, (2013).
[4] N.A. Rejab, and A. Azhar, “The Effects of CeO2 Addition on the Physical, Microstructural and Mechanical Properties of Yttria Stabilized Zirconia Toughened Alumina (ZTA)”, Intertional Journal of Refractory Metals and Hard Materials, Vol. 36, PP. 162 – 166, (2013).
 [5] C.,Suryanarayana “Mechanical alloying and milling”, Progress in Materials Science., No. 46, 2001, PP. 1-184
[6] A.M. Hassan, and S.M. Naga, “Toughening and Strengthening of  Nb2O5 Doped  Zirconia/Alumina (ZTA) Composites”, Intertional Journal of Refractory Metals and Hard Materials, Vol. 48, PP. 338-345, (2015).
[7] D.H. Riu, and Y.M. Kong, ″Effect of Cr2O3 addition on microstructural evolution and mechanical properties of Al2O3″, Journal of the European Ceramic Society, Vol. 20, PP. 1475–1481, (2000).
[8] A. Azhar and L.Chun Choong, ″Effects of MgOAddition on the Mechanical Properties, Microstructure and Wear Performance of Zirconia Toughened-Alumina(ZTA) CuttingInserts″, Journal of Alloys and Compounds, Vol. 513, pp. 91– 96, (2012).
[9] M. Hanisah, A. Azhar, ″ Effect of Cr2O3-TiO2 Addition on the Physical Properties of Zirconia Toughened Alumina″, Materials Science Forum, Vol. 840, PP. 34-38, (2016).
[10] Y.F. Hsu, S.F. Wang, Y.R. Wang, S.C. Chen, “Effect of Niobium Doping on the Densification and Grain Growth in Alumina”, Ceramics International., Vol. 34, PP. 1183–1187, (2008).
[11] A.M. Hassan, M. Awaad, S.M. Naga, “Densification Behavior and Mechanical Properties of  Niobium-Oxide-Doped Alumina Ceramics”, Journal of  Ceramis Science and Technology., Vol. 05, No. 01, PP. 51-56, (2014).
[12] P.d.E. Louis Winnubst, and T.H. P. Leuwerink “Effect of Calcination on the Sintering of Gel-
Derived, Zirconia-Toughened Alumina”, Journal of American Ceramic Society, Vol. 77, PP. 2376-2380, (1994).
 [13] R. Gopi Chandran, and  K. C. Patil,“ Combustion Synthesis and Properties of
Mullite-Zirconia Composites”, Journal of Materials Science, Vol. 31, PP. 5773-5779, (1996).
[14] R. C. Garvie, And P. Nicholson,“ Phase Analysis in Zirconia Systems”, Journal of The American Ceramic Society, Vol. 55, PP. 303-305, (1972).
[15] G. K. LAYDEN, “The System AI2O3-N b2O5”, Journal of The American Ceramic Society-Discussions and Notes, Vol. 46, No. 10, PP.506, (1963).
[16] W.N D. SantosWilson Nunes Dos Santos, P.I.P. Filho, R. Taylor, “Effect of addition of niobium oxide on the thermal conductivity of alumina”, Journal of the European Ceramic Society, Vol. 18, PP. 807-811, (1998).
[17] Y. AiWilson Nunes Dos Santos, F. He, B. Liang, “Mechanical properties of Nb2O5-Al2O3 ceramics prepared by microwave sintering”, Advanced Materials Research, Vol. 338, PP. 120-123, (2011).
 [18] D.J. kim, H.J. Jung, D.H. Cho, “Phase Transformations of Y2O3 and Nb2O5 Doped Tetragonal Zirconia During Low Temperature Aging in Air”, Solid State Ionics, Vol. 80, PP. 67-73, (1995).
[19] Lange, F. F., “Transformation Toughening: part 4 Fabrication, Fracture Toughness and Strength of Al2O3–ZrO2 Composites”, Journal of Materials science., Vol. 17, PP. 247–254,(1982).
[20] G. Magnani, and A. Brillante, “Effect of the composition and sintering process on mechanical properties and residual stresses in zirconia–alumina composites”,  Journal of the European Ceramic Society, Vol. 25, PP. 3383–3392, (2005).
 [21] L. Zhang, A. M. Ferrari, C. Leonelli, T. Manfredini, “Reaction Mechanism in Alumina/Chromia (Al2O3–Cr2O3) Solid Solutions Obtained by Coprecipitation”,  Journal of American Ceramic Society, Vol. 83, No. 8,  PP. 3036–3040, (2000).
[22] F. Bondioli, M. Kuhn, U. Diebold, “Growth, structure and thermal properties of chromium oxide films on Pt (111)”,  Surface science, Vol. 375, PP. 1–12,(1997).
[23] F. Guo, P. Xiao, “Effect of Fe2O3 Doping on Sintering of Yttria-Stabilized Zirconia”, Journal of the European  Ceramic  Society, Vol. 32, PP. 4157–4164, (2012).
[24] Q. Dong, Z.H. Du, T.S. Zhang, J. Lu, X.C. Song, J. Ma, “Sintering and Ionic Conductivity of 8YSZ and CGO10 Electrolytes With Small Addition of Fe2O3: A Comparative Study”, International Journal of Hydrogen Energy, Vol. 34, PP. 7903–7909, (2009).
[25] M.M.R. Boutz, A.J.A. Winnubst, F.H. Hartgers, A.J. Burggraaf, “Effect of Additives on Densification and Deformation of Tetragonal Zirconia”, Journal of Materials Science, Vol. 29, PP. 5374–5382, (1994).
[26] W.H. Rhodes, R.E. Carter, “Cationic Self-Diffusion In Calcia-Stabilized Zirconia”, Journal of American Ceramic Society, Vol. 49, No. 5, PP. 244–249, (1966).
[27] R.J.D. Tilley, “Principles and Applications of Chemical Defects”, Stanley Thornes Ltd, Cheltenham, U.K., (1998).
[28] S.M. Vidyavathy, and V.Kamaraj, “Microwave Sintering of Niobium Co-doped Yttria Stabilized Zirconia”,  Modern Applied Science, Vol. 3, No. 6,  PP. 102–105, (2009).
[29] B.F. Pedersen, “The Crystal Structure of Aluminum Niobium Oxide (AlNbO4) ”, Acta Chemica Scandinavica, Vol. 16, PP. 421 – 430, (1962).