ارزیابی میکروسکپی و الکترومغناطیسی پدیده پیری در فولاد زنگ‌نزن دوفازی 2304

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی مواد و صنایع، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران.

2 دانشیار، دانشکده مهندسی مواد و صنایع، دانشگاه صنعتی نوشیروانی بابل، بابل، ایران.

چکیده

برای ارزیابی پدیده پیری در فولاد زنگ‌نزن دوفازی 2304 از بررسی‌های میکروسکپی و الکترومغناطیسی استفاده شد. عملیات پیرسازی مصنوعی در دماهای 700، 800 و 900 درجه سانتی‌گراد و در زمان‌های 15، 60 و 120 دقیقه انجام شد. برای بررسی‌های ریزساختاری و سختی، از میکروسکوپ نوری مجهز به نرم‌افزار آنالیز تصویر، میکروسکپ الکترونی روبشی مجهز به آنالیزگر شیمیایی، دستگاه پراش پرتو ایکس و روش ویکرز استفاده شد. سپس برای ارزیابی الکترومغناطیسی از آزمون جریان گردابی در فرکانس‌ kHz100 استفاده شد که داده‌ها به صورت نقشه امپدانسی ارائه و ارزیابی شد. بررسی‌های میکروسکپی نشان داد که با افزایش شدت پیری از طریق افزایش دما و زمان پیرسازی، مقدار فاز فریت کاسته می‌شود و در مقابل فازهای ثانویه از نوع کاربیدM23C6 ، نیترید Cr2N  و آستنیت ثانویه (2Ƴ) در ریزساختار تشکیل و رشد می کنند. این فازهای ثانویه در داخل فاز فریت تشکیل شده و منجر به کاهش کسر حجمی فاز فریت، نسبت به نمونه پیرنشده شده است. بیشترین این تغییرات در دمای 900 و زمان 120 دقیقه مشاهده شده است. نتایج ارزیابی الکترومغناطیسی نشان داده است که با افزایش دما و زمان پیرسازی، تشکیل بیشتر رسوبات مخرب و کاهش شدید میزان فریت در ریزساختار، پاسخ‌های الکترومغناطیسی به طور مناسبی با کاهش بیشتر دو شاخص مقاومت خود القایی و امپدانس و افزایش بیشتر شاخص  مقاومت الکتریکی تغییر می‌کند. بنابراین می‌توان شدت وقوع پدیده پیری در این فولاد را از روی نقشه امپدانسی آن مشاهده نمود.  

کلیدواژه‌ها


عنوان مقاله [English]

Microstructurally and Electromagnetically Evaluations of Aging Phenomenon in 2304 Duplex Stainless Steel

نویسندگان [English]

  • Hossein Alinejad 1
  • Majid Abbasi 2
1 Ph.D. Candidate, Faculty of Materials and Industrial Engineering, Babol Noshirvani University of Technology, Mazandaran, Iran.
2 Associate Professor, Faculty of Materials and Industrial Engineering, Babol Noshirvani University of Technology, Mazandaran, Iran.
چکیده [English]

Microstructural ‎and Electromagnetically Methods were performed for evaluation of aging phenomenon in 2304 duplex stainless steel. The artificial aging process were carried out at temperatures of 700, 800 and 900 °C and at 15, 60 and 120 minutes. For microscopic and hardness evaluations, optical microscopy equipped with image analysis software, scanning electron microscopy equipped with chemical analyzer, X-ray diffraction device and Vickers method were used. Then, for electromagnetic evaluation, the eddy current test at 100 kHz was performed, and the data were presented and evaluated as an impedance plan. The microscopic studies showed that with increasing aging intensity by increasing aging temperature and time, reduced the amount of ferrite phase. In contrast, the secondary phases of M23C6 carbide, Cr2N nitride, and secondary austenite form and grow in the microstructure. These secondary phases are formed within the ferrite phase and lead to a reduction in the volume fraction of the ferrite phase relative to the annealed sample. The most sever changes were observed at 900 °C and 120 min. The results of electromagnetic evaluation have shown that with increasing the aging temperature and time, formation of more destructive phases and a sharp decreasing of ferrite content in the microstructure, the electromagnetic responses change appropriately by further reducing the inductive reactance and impedance index and further increasing the resistance index. Therefore, the severity of the aging phenomenon in the steel can be seen from its impedance plan.

کلیدواژه‌ها [English]

  • Duplex Stainless Steel
  • Aging Phenomenon
  • Nondestructive Evaluation
  • Eddy Current Method
  • Impedance Plan
 [1] A. Tahchieva, N. Llorca-Isern, J.-M. Cabrera, Duplex and superduplex stainless steels: microstructure and property evolution by surface modification processes, Metals (Basel). 9 (2019) 347,
[2] R. Badji, N. Kherrouba, B. Mehdi, B. Cheniti, M. Bouabdallah, C. Kahloun, B. Bacroix, Precipitation kinetics and mechanical behavior in a solution treated and aged dual phase stainless steel, Mater. Chem. Phys., 148, (2014), 664–672.
[3] M. Yang, YC. Chen, CH. Chen, WP. Huang, D-Y. Lin, Microstructural characterization of δ/γ/σ/γ2/χ phases in silver-doped 2205 duplex stainless steel under 800°C aging, J. Alloys Compd, 633, (2015), 48-53.
[4] C. Gennari, L. Pezzato, E. Piva, R. Gobbo, I. Calliari, Influence of small amount and different morphology of secondary phases on impact toughness of UNS S32205 Duplex Stainless Steel, Mater. Sci. Eng. A. 729 (2018) 149–156.
 [5] J.Y. Maetz, T. Douillard, S. Cazottes, C. Verdu,X. Kleber, M23C6 carbides and Cr2N nitrides precipitation in aged duplex stainless steel: A SEM, TEM and FIB tomography investigation, Micron, 84, (2016), 43–53.
[6] A.D. C. Rocha, M.C.L. Areiza, S.S. Tavares, J.M.A. Rebello, Microstructural evaluation of a lean duplex UNS S32304-X-ray diffraction and scanning electron microscopy techniques correlated with eddy current testing, Annual Meeting Supplemental Proceedings TMS (The Minerals, Metals & Materials Society) TMS, (2014), 741-749.
[7] K.W. Chan, S. C. Tjong, Effect of secondary phase precipitation on the corrosion behavior of duplex stainless steels, Materials, 7, (2014), 5268–5304.
[8]  C. Ornek, J. Walton, T. Hashimoto, T.L. Ladwein, S.B. Lyon, D.L. Engelberg, Characterization of 475 °C embrittlement of duplex stainless steel microstructure via scanning kelvin probe force microscopy and magnetic force microscopy, J. Electrochem. Soc. 164 (2017), 207–217.
[9] C. Camerini, R. Sacramento, M. C. Areiza, A. Rocha, J. M, Rebello, Pereira G., Eddy current techniques for super duplex stainless steel characterization, Journal of Magnetism and Magnetic Materials 388, (2015), 96-100.
[10] M.C.L. Areiza, R. Sacramento, R. Sommer, D. Gonzalez and J.M.A. Rebello, Understanding sigma phase influence on the magnetic behavior of duplex stainless steel, (Paper presented at the 16th International Workshop on Electromagnetic Nondestructive Evaluation, ENDE2011. Chennai, India), March, (2011).
[11] D.D.S. Silva, J.M.B. Sobrinho, C.R. Souto, R.M. Gomes, Application of electromechanical impedance technique in the monitoring of sigma phase embrittlement in duplex stainless steel, Mater. Sci. Eng. A. (2020), 139457.
[12] Y. Kelidari, M.Kashefi, M.Mirjalili, M.Seyedi, T.W. Krause. Eddy current technique as a nondestructive method for evaluating the degree of sensitization of 304 stainless steel. Corrosion Science 173 (2020), 108742.
[13] J.D. Angelo, A. Bennecer, P. Picton, S. Kaczmarczyk, A. Soares. Eddy current analysis of shipped stainless steel heat exchanger bundle, Case Studies in Nondestructive Testing and Evaluation 6, (2016), 89–93.
[14] M. Bohacova, Detection of imperfections on internal surface of super-duplex stainless steel tubes designated for oil and gas exploration by means of eddy current method, 11th European Conference on Non-Destructive Testing, ECNDT, (2014).
[15] T. Liu, W. Wang, W. Qiang, G. Shu. Mechanical properties and eddy current testing of thermally aged Z3CN20.09M cast duplex stainless steel. Journal of Nuclear Materials, 501, 1, (2018), 1-7.
[16] K.K. Nezhad, S. Kahrobaee, I.A. Akhlaghi,. Application of magnetic hysteresis loop method to determine prior austenite grain size in plain carbon steels. J. Magn. Magn. Mater. 324(23), (2019), 4090–4093.
[17] S. Kahrobaee, H. Norouzi Sahraei, I. Ahadi Akhlaghi,. Nondestructive characterization of microstructure and mechanical properties of heat treated H13 tool steel using magnetic hysteresis loop methodology. Res. Nondestruct. Eval. 30(1), (2019), 1–13.
[18] A. Asadi, M. Abbasi, M. Shamgholi, Eddy current detection of retained austenite in Ni-hard4 cast iron, Research in Nondestructive Evaluation, 29, (2018), 38-47.
[19] G. Straffelini, S. Baldo, I. Calliari, E. Ramous, Effect of aging on the fracture behavior of lean duplex stainless steels, Metallurgical and Materials Transactions A, 40, 11, (2009), 2616-2621.
[20] J. García, J. Gómez, E. Vázquez, Non-destructive techniques based on eddy current testing,  Sensors, 11, (2011), 2525-2565.
[21] Eddy Current Testing at Level 2: Training guidelines for non-destructive testing, Vienna, International Atomic Energy Agency, (2011), 99-111.
[22] Z. Zhang, Dong Han, Yiming Jiang, Chong Shi, Jin Li, Microstructural evolution and pitting resistance of annealed lean duplex stainless steel UNS S32304. Nuclear Engineering and Design 243, (2012), 56–62.
[23] J. Maetz, S. Cazottes, C. Verdu, X. Kleber, Precipitation and phase transformations in 2101 lean duplex stainless steel during isothermal aging, Metallurgical and Materials Transactions A, 47, (2016), 239–253.
[24] I. Mészáros, B. Bögre, Complex study of eutectoidal phase transformation of 2507-type super-duplex stainless steel, Materials, 12, 13, (2019), 1-19.
[25] A.J. Ramirez, J.C. Lippold, S.D. Brandi. The relationship between Chromium Nitride and Secondary Austenite precipitation in Duplex Stainless Steels. Metallurg. Mater. Trans. A, 34A, (2003), 1575–1596.
[26] M. Knyazeva, M. Pohl, Duplex Steels. Part II: Carbides and Nitrides, Metallogr. Microstruct. Anal., 2, (2013), 343–351.
[27] H. Berns, W. Theisen, in Ferrous Materials-Steel and Cast Iron, Springer, Berlin, (2008) 47 & 322.
[28] Y. Ohmori, K. Nakai, H. Ohtsubo, Y. Isshiki, Mechanism of Widmannstatten austenite formation in a a/c-duplex phase stainless steel, ISIJ Int. 35, 8, (1995), 969–975.
[29] D. Zou, Y. Han, W. Zhang, G. Fan. Phase transformation and its effects on mechanical properties and pitting corrosion resistance of 2205 duplex stainless steel, J. of Iron and Steel Research Inter., 17, 11, (2010), 67-72.
[30] EM. Silva, JP. Leite, FA. França Neto, JP. Leite, WML. Fialho, VHC. Albuquerque, JMRS, Tavares, Evaluation of the Magnetic permeability for the microstructural characterization of a duplex stainless steel, Journal of Testing and Evaluation, 44, 3,(2014), 44.
[31] S. Topolska., B. Labanovski, Effect of microstructure on impact toughness of duplex and super duplex stainless steels, Journal of Achievements in Materials and Manufacturing Engineering 36, (2009), 142-149.
[32] A. Asadi, M. Abbasi, M. Shamgholi, Nondestructive evaluation of microstructure of wear resistance Ni-hard4 cast iron by eddy current technique, Metallurgical Engineering, 18, 59, (2016) 34-43.
[33] S. Ghanei, M. Kashefi, M. Mazinani, Comparative study of eddy current and Barkhousen noise nondestructive testing methods in microstructural examination of ferrita-martensite dual-phase steel, J.  Magn. Mater., 356, (2014), 103-110.
[34] L. K. Kogan, A.P. Nichipuruk, L.D. Gavrilova, Effect of the carbon content on the magnetic and electric properties of thermally treated carbon steels and the possibilities of testing the quality of tempering of articles produced from them via the eddy current method, Russian Journal of Nondestructive Testing, 42 (2006), 616–629.
[35] M. Sheikh Amiri, M. Kashefi, Application of eddy current nondestructive method for determination of surface carbon content in carburized steels, NDT & E Int. 42 (2009) 618-621.
[36] S. Kahrobaee, M.S.Haghighi, I.A.Akhlaghi, Improving nondestructive characterization of dual phase steels using data fusion, J. Magn. Magn. Mater., 458, (2018), 317–326.
[37] S.S.M. Tavares, J.M. Pardal, J.L. Guerreiro, A.M. Gomes, M.R. Da Silva, Magnetic detection of sigma phase in duplex stainless steel UNS S31803, Journal of Magnetism and Magnetic Materials, 322, (2010), 29-33.