تحول ریز ساختاری و خواص مکانیکی کامپوزیت آلومینیم 5083 تقویت شده با ذرات درجای دی بورید تیتانیم (TiB2)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی متالورژی و مواد، پردیس دانشکده‌های فنی، دانشگاه تهران،

2 استاد، دانشکده مهندسی متالورژی و مواد، پردیس دانشکده‌های فنی، دانشگاه تهران،

3 کارشناسی ارشد، دانشکده مهندسی متالورژی و مواد، پردیس دانشکده‌های فنی، دانشگاه تهران،

چکیده

در این پژوهش تغییر ریز ساختار و خواص مکانیکی کامپوزیت درجای آلومینیم 5083 با مقادیر 1 و 5 درصد حجمی دی بورید تیتانیم مورد بررسی قرار گرفته است. مشخص شد که با انجام فرآیند اکستروژن داغ یکنواختی توزیع ذرات تقویت کننده دی بورید تیتانیم بیشتر شده و از کلوخه ای شدن ذرات در مقایسه با ساختار ریختگی کاسته می شود. تصاویر میکروسکوپ الکترونی روبشی نشان داد که این ذرات در کامپوزیت 1 درصد حجمی، تقریبا کروی شکل و هم محور و با اندازه ای حدود 5/0 میکرومتر است در حالی که این ذرات در ساختار کامپوزیت 5 درصد حجمی به شکل هگزاگونال و با اندازه ای حدود 2 میکرومتر می باشد. همچنین مشاهده شد که با افزایش ذرات دی بورید تیتانیم، اندازه دانه فاز زمینه آلومینیم 5083 کاهش می یابد. بررسی خواص مکانیکی نشان داد که با افزایش مقدار دی بورید تیتانیم، سختی، استحکام تسلیم، مدول الاستیک و استحکام کششی نهایی کامپوزیت افزایش می یابد که این موضوع به دلیل وجود ذرات سخت و مستحکم دی بورید تیتانیم و کاهش اندازه دانه، ناشی از حضور این ذرات است.

کلیدواژه‌ها


عنوان مقاله [English]

Microstructural Evolution and Mechanical Properties of Al5083 Composite Reinforced with In-Situ TiB2 Particles

نویسندگان [English]

  • Alireza Jafari Pirlari 1
  • Massoud Emamy 2
  • Meysam Naghizadeh 3
1 PhD Student, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran,
2 Professor, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran,
3 MSc, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran,
چکیده [English]

Microstructural evolution and mechanical properties of in-situ Al5083 composites with 1 and 5 volume percent of TiB2 reinforcement particles were investigated. It was revealed that hot extrusion process results in a uniform, more homogeneous and less clustered structure of TiB2 particles compared with the as-cast structures. Scanning electron microscopy showed that TiB2 particles in the Al5083-1 vol.% TiB2 composite have a nearly equiaxed morphology and round shape with an average size of ~ 0.5 µm. While, the morphology of TiB2 particles in Al5083-5 vol.% TiB2 composite is hexagonal with an average size of ~ 2 µm. Also, it was found that the grain size reduces by adding TiB2 reinforcement particles to the Al5083 alloy. It was shown that the hardness, yield strength, young’s modulus, and ultimate tensile strength of the Al5083-TiB2 composites increase with increasing TiB2 content. This can be attributed to the effect of TiB2 particles as a high hardness reinforcement phase and also the smaller grain size of the matrix which was resulted by adding the TiB2 particles.

کلیدواژه‌ها [English]

  • Al 5083
  • In-Situ Composite
  • Titanium diboride
  • Mechanical properties
  • Microstructural evolution
[1] R. Kaibyshev, F. Musin, E. Avtokratova, Y. Motohashi, Deformation behavior of a modified 5083 aluminum alloy, Materials Science and Engineering A, 2005, vol. 392, pp. 373-379.

[2] Ian Polmear, Light alloys from traditional alloys to nanocrystals, 4th ed., Elsevier, Melbourne, 2006.

[3] S.K. Thakur, M. Gupta, Improving mechanical performance of Al by using Ti as reinforcement, Composites, 2007, vol. 38A, pp. 1010-1018.

[4] V.L. Tellkamp, E.J. Lavernia, Processing and mechanical properties of nanocrystaline 5083 Al alloy, ActaMetallurgica, 1999, vol. 12, pp. 249-252.

[5] D. Witkin, B.Q. Han, E.J. Lavernia, Microstructural evolution of an ultrafine-grained cryomilled Al 5083 alloy during thermo-mechanical processing, Journal of Materials Research Society, 2005, vol. 20, pp. 2117-2126.

[6] A. Alizadeh, A. Abdollahi, H. Biukani, Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B4C), Journal of Alloys and Compounds, 2015, vol. 650, pp. 783-793.

[7] S.A. Hossieni, K. Ranjbar, R. Dehmolaei, A.R. Amirani, Fabrication of Al5083 surface composites reinforced by CNTs and cerium oxide nano particles via friction stir processing,Journal of Alloys and Compounds, 2015, vol. 622, pp. 725-733. 

[8] S. Bathula, R.C. Anandani, A. Dhar, A.K. Srivastava, Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering, Materials Science and Engineering A, 2012, vol. 545, pp. 97-102.

[9] Y. Birol, In situ synthesis of Al-TiCp composites by reacting K2TiF6 and particulate graphite in molten aluminium, Journal of Alloys and Compounds, 2008, vol. 454, pp. 110-117.

[10] I. Dinaharan, N. Murugan, S. Parameswaran, Influence of in situ formed ZrB2 particles on microstructure and mechanical properties of AA6061 metal matrix composites, Materials Science and Engineering A, 2011, vol. 528, pp. 5733-5740.

[11] S.S.S. Kumari, U.T.S. Pillai, B.C. Pai, Synthesis and characterization of in situ Al-AlN composite by nitrogen gas bubbling method, Journal of Alloys and Compounds, 2011, vol. 509, pp. 2503-2509.

[12] M. Hoseini, M. Meratian, Fabrication of in situ aluminum- alumina composite with glass powder, Journal of Alloys and Compounds, 2009, vol. 471, pp. 378-382.

[13] R. Hadian, M. Emamy, N. Varahram, N. Nemati, The effect of Li on the tensile properties of cast Al-Mg2Si metal matrix composite, Materials Science and Engineering A, 2008, vol. 490, pp. 250-257.

[14] M. Emamy, H.R.J. Nodooshan, A. Malekan, The microstructure, hardness and tensile properties of Al-15% Mg2Si in situ composite with yttrium addition, Materials and Design, 2011, vol. 32, pp. 4559-4566.

[15]M. KarbalaeiAkbari, H.R. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites, Materials and Design, 2015, vol. 66, pp. 150-161.

[16] T.Wang, Y. Zheng, Z. Chen, Y. Zhao, H. Kang, Effects of Sr on the microstructure and mechanical properties of in situ TiB2 reinforced A356 composite, Materials and Design, 2014, vol. 64, pp. 185-193.

[17] G. Han, W. Zhang, G. Zhang, Z. Feng, Y. Wang, High-temperature mechanical properties and fracture mechanisms of Al–Si piston alloy reinforced with in situ TiB2 particles, Materials Science and Engineering A, 2015, vol. 633, pp. 161-168.

[18] H.B.MichaelRajan, S. Ramabalan, I. Dinaharan, S.J. Vijay, Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites, Materials and Design, 2013, vol. 44, pp. 438-445.

[19] Z. Chen, T.Wang, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites: part I: an improved halide salt route to fabricate Al-5 wt.% TiB2 master composite, Materials Science and Engineering A, 2014, vol. 605, pp. 301 309.

[20] P. Davies, J.L.F. Kellie, D.P. Parton, London and Scandinavian, Co. Ld., Patent, 1993, WO 93/05189.

[21] T. Wang, Z. Chen, Y. Zheng, Y. Zhao, H. Kang, L. Gao, Development of TiB2 reinforced aluminum foundry alloy based in situ composites – part II: enhancing the practical aluminum foundry alloys, using the improved Al–5 wt% TiB2 master composite upon dilution, Materials Science and Engineering A, 2014, vol. 605, pp. 22-32.

[22] F. Chen, Z. Chen, F. Mao, T. Wang, Z. Cao, TiB2 reinforced aluminum based in situ composites fabricated by stir casting, Materials Science and Engineering A, 2015, vol. 625, pp. 357-368.

[23] S. Kumar, M. Chakraborty, V. SubramanyaSarma, B.S. Murty, Tensile and wear behavior of in situ Al-7Si/TiB2 particulate composites, Wear, 2008, vol. 265, pp. 134-142.

[24] C.Y. Dan, Z. Chen, G. Ji, S.H. Zhong, Y. Wu, F. Brisset, H.W. Wang, V. Ji, Microstructure study of cold rolling nanosized in-situ TiB2 particle reinforced Al composites,Materials and Design, 2017, vol. 130, pp. 357-365.

[25] M. Li, K. Ma, L. Jiang, H. Yang, E.J. Lavernia, L. Zhang, J.M. Schoenung, Synthesis and mechanical behavior of nanostructured Al5083/n-TiB2 metal matrix composites, Materials Science and Engineering A, 2016, vol. 656, pp. 241-248.

[26] A.S. Vivekananda, S.B. Prabu, Wear behaviour of in situ Al/TiB2 composite: influence of the microstructural instability, Tribology Letters, 2018, vol. 66, pp. 41.

[27] G. Moona, R.S. Walia, V. Rastogi, R. Sharma, Aluminium metal matrix composites: A retrospective investigation, Indian Journal of Pure and Applied Physics, 2018, vol. 56, pp. 164-175.

[28] N.L. Yue, L. Lu, M.O. Lai, Application of Thermodynamic Calculation in the In-Situ Process of Al/TiB2, Composite Structures, 1999, vol. 47, pp. 691-694.

[29] S. Agrawal, A.K. Ghose, I. Chakrabarty, Effect of rotary electromagnetic stirring during solidification of In-situ Al-TiB2 composites, Materials and Design, 2017, vol. 113, pp. 195-206.

[30] B.S. Murty, S.A. Kori, M. Chakraborty, Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying, International Materials Reviews, 2002, vol. 47, pp. 3-29.