تاثیرعملیات حرارتی بر ساختار و دمای کوری آلیاژ فرومغناطیس نیکل-مس (4/70-6/29)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 پژوهشگاه علوم و فنون هسته ای، تهران، ایران

2 دانشیار،مهندسی مواد،پژوهشکده موادپیشرفته و انرژی های نو، سازمان پژوهش های علمی و صنعتی ایران،

3 استادیار، فیزیک ماده چگال ،پژوهشکده مواد پیشرفته و انرژیهای نو، سازمان پژوهشهای علمی و صنعتی ایران،

4 استاد،علوم و فنون هسته ای، پژوهشکده کاربرد پرتوها، پژوهشگاه علوم و فنون هسته ای،

5 دانشیار، فیزیک ماده چگال،پژوهشکده کاربرد پرتوها، پژوهشگاه علوم و فنون هسته ای،

چکیده

آلیاژ Ni-Cu با درصد وزنی (%6/29-4/70) توسط کوره ذوب مجدد قوسی تحت خلاء (VAR) ذوب ریزی شد. بررسی یکنواختی نمونه ها با استفاده از آنالیزهای پلاسمای کوپل القایی (ICP) و طیف سنجی پراش انرژی پرتو ایکس (EDS) ایدکس حاکی از ایجاد یکنواختی مطلوب بعد از 4 بار ذوب مجدد می باشد. نتایج بررسی دمای کوری آلیاژ توسط دستگاه مغناطش سنج نمونه ارتعاشی(VSM) تحت تاثیر عملیات حرارتی مختلف نشان دهنده افزایش دمای کوری با گذار آهسته از منطقه دمایی استحاله منظم-نامنظم در دیاگرام فازی و یا گرمایش تا منطقه مذکور می باشد. به این صورت که دمای کوری آلیاژی که بعد از ذوب کوئنچ می شودͦ C 60، آلیاژی که بعد از ذوب به مدت 24 ساعت در دمایͦC 1000 آنیل می شود و سپس در آب کوئنچ می شودͦC 40 و آلیاژی که بعد از ذوب و کوئنچ تا دمایͦC 70 گرم می شود ͦC 5/45 می باشد. فاصله صفحات متوالی در ساختار کریستالی آلیاژ که با استفاده از دستگاه پراش پرتو ایکس (XRD) محاسبه شد نشان دهنده افزایش ناچیز فاصله صفحات کریستالی در نمونه بدون انجام عملیات حرارتی، در نتیجه‏ی فرآیند خوشه ای شدن است. علاوه بر آن تصاویر حاصل از بررسی مورفولوژی سطحی آلیاژ با استفاده از میکروسکوپ نوری فرآیند خوشه ای شدن در شرایط مذکور را تایید می کند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of thermal treatment on structure and Curie temperature of Ni-Cu (70.4-29.6;W/W) ferromagnetic alloy

نویسندگان [English]

  • elham Mohagheghpour 1
  • Reza gholamipour 2
  • Marjan Rajabi 3
  • Shahab sheibani 4
  • Majid Mojtahedzadeh larijani 5
1 Nuclear Sciences and Technology Institute, Tehran, Iran
2 Associated Professor, Advanced Materials, Department of Advanced Materials and Renewable Energy, Iranian Research Organization for Science and Technology(IROST),
3 Assistant Professor, Condensed Matter Physics, Department of Advanced Materials and Renewable Energy, Iranian Research Organization for Science and Technology(IROST),
4 Professor, Nuclear Science and Technology, Radiation Application Research School, Nuclear Sciences and Technology Institute
5 Associated Professor, Condensed Matter Physics, Radiation Application Research School, Nuclear Sciences and Technology Institute,
چکیده [English]

Ni-Cu (70.4-29.6 ; wt%) alloy was prepared by a Vacuum Arc Remelting (VAR) furnace and the effect of thermal treatment on structure and Curie temperature was investigated. The results of Inductively Coupled Plasma (ICP) and EDS analysis showed that specimens with 4 times remelting were homogenized. The Curie temperature of alloy that measured by vibrating sample magnetometry (VSM) under condition of slow cooling across from order-disorder transition of alloy was higher than specimens quenched from recrystallization temperature. Curie temperature (TC) of alloy that quenched after melting was 60 ͦ C ,TC of sample that annealed in 1000 ͦ C for 24 hours then quenched in water was 40 ͦ C and sample that after annealing twice heated up to 70 ͦ C was 45.5 °C .
The d-spacing of the specimen without heat treatment, calculated by X-Ray Diffraction, had a little increase due to clustering. In addition, the surface morphology by optical microscope confirmed this behavior of Cu–Ni alloys in the different heat treatment.

کلیدواژه‌ها [English]

  • "Curie temperature"
  • " thermal treatment"
  • " homogenization"
  • " clustering"
  • "order-disorder transition"
[1] Parsai EI, Gautam B, ShvydkaD. Evaluation of a Novel Thermobrachytherapy Seed for Concurrent Administration of Brachytherapy and Magnetically Mediated Hyperthermia in  Treatment of Solid Tumors. J Biomed Phys Eng. 2011; 1 (1) 5-16.

[2] Warrell G, Shvydka D,  Parsai EI.Use of novel thermobrachytherapy seeds for realistic prostate seed implant treatments. Med Phys. 2016; 43 (11) 6033-6048.

[3] Chichel A,Skowronek J, Kubaszewska M, Kanikowski M. Hyperthermia – description of a method and a review of clinical applications.Rep PractOncolRadiother. 2007; 12 (5) 267-275.

[4] Shvydka D,Gautam B, Parsai E I, Feldmeier JJ. SU-FF-T-39:Investigating Thermal Properties of a Thermobrachytherapy Radioactive Seed for Concurrent Brachytherapy and Hyperthermia Treatments: Design Considerations.Med Phys.2009; 36 (6) 25-28.

[5] Pankhurst QA,Connolly J, Jones SK, Dobsen JJ. Applications of magnetic nanoparticles in biomedicine.J. Phys. D: Appl. Phys. 2003; 36 (13) 167-181.

[6] Kuznetsov AA, Shlyakhtin OA, Brusnetov NA, Kuznetsov OA. Smart mediators for self-controlled inductive heating. Eur Cell Mater. 2002; 3 (2) 75-77.

[7] Jordan A, Scholz R,Wurst P, Faehling H, Felix R. Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles.J MagnMagn Mater. 1999; 201 (7) 413-419.

[8] Brezovich IA, Atkinson WJ, LillyMB. Local Hyperthermia with Interstitial Techniques. Cancer Res. 1984; 44. 4752s-4756s.

[9] Kobayashi T, Kida Y, Tanaka TJ, Kageyama N, Kobayashi H, Amemiya Y. Magnetic induction hyperthermia for brain tumor using ferromagnetic implant with low Curie temperature.J Neurooncol. 1986; 4. 175-181.

[10] Deger S, Boehmer D, Turk I, Roigas J, Budach V, LoeningSA.Interstitial Hyperthermia using Self-Regulating Thermoseeds Combined with Conformal Radiation Therapy.Eur Urol. 2002; 42(8) 147-153.

[11] Yue-Chun, Xiang-Xiang W, Yun MA, Yan H,Ren-Li Z. Orientated thermotherapy of ferromagnetic thermoseed in hepatic tumors. WJG. 1998; 4 (4) 326-328.

[12] Lilly M B, Brezovich I A, Atkinson W. J. Hyperthermia induction with thermally self-regulated ferromagnetic implants. Radiology. 1985; 154 (1) 243-244.

[13] Ho CY, Ackerman MW, Wu KY, Havill TN, Bogaard RH, Matula RA, Oh SG, James HM. Electrical resistivity of Ten selected Binary Alloy systems.J. Phys. Chem. Ref. Data. 1983; 12 (2) 226-318.

[14] Engineering Properties of Some Nikel Copper Casting Alloys.The International Nickel Company.1969; 1-12.

[15] Koch CC. Top-down synthesis of nanostructured materials:Mechanical and thermal processing methods. Rev Adv Mater Sci. 2003; 5. 91-99.

[16] Ahern SA, Martin MJC, Sucksmith W. The spontaneous magnetization of nickel +copper alloy.Proc R SocLondA .1958; 248. 145-151. 10.1098/rspa.1958.0235.

[17] YeongDY, Tasai JH. Magnetic Phase Transition in Nickel-Rich Nickel-Copper Alloys. Chinese Journal of Physics. 1978; 16 (4) 189-195.

[18] BettgeM, Chatterjee J, Haik Y. Physically synthesized Ni-Cu nanoparticles for magnetic Hyperthermia.BioMagn Technol. 2004; 2 (4) 1-6.

[19] Drits ME, Bochvar NR, Guzei LS, et al. Binary and Multicomponent Copper_Based Systems: A Handbook.Nauka, Moscow. 1979.

[20] Fleck V. Theoretical and Applied Materials Science. Atomizdat, Moscow. 1975.

[21] Usov VV, Shkatulyak NM, TitenkovAN. Nature of the ShortRange Decomposition of a Cu–10 at % Ni Alloy upon Annealing. Russian Metallurgy (METALLY). 2010; 2010 (5) 418-424.

[22] Robbins CG, Claus H, Beck PA. Transition from Ferromagnetism to Paramagnetism in Ni-Cu Alloys. J Appl Phys. 1969; 40 (5) 2269.

[23] HadimaniRL, Melikhov Y, Snyder JE, Jiles DC. Determination of Curie temperature by Arrott plot technique in Gd5(SixGe1x)4 for x>0.575.J MagnMagn Mater. 2007; 320 (20)e696–e698.

[24] Ban I, Stergar J, Drofenik M, Ferk G, Makovec D. Synthesis of copper–nickel nanoparticles prepared by mechanical milling for use in magnetic hyperthermia.J MagnMagn Mater. 2011; 323 (17) 2254–2258.

[25] Rabinkin A. Curie Temperature of Metals Magnetic Alloys Measured by Different Techniques.IEEE Trans Magn. 1987; 23 (6) 3874-3877.

[26] Hedman LE,Mattuck RD. Effect of Heat Treatment and Plastic Deformation on the Paramagnetic Susceptibility of Cu-Ni alloy.J PhysChem Solids. 1962; 23. 955-962.

[27] Elena M, Vergara S, Huitron JCA, Gomez RA, Burstin JNR. Determination of the optical gap in thin films of amorphous dilithiumphthalocyanine using the Tauc and Cody models. Molecules. 2012; 17. 10000-10013. 10.3390/molecules170910000.

[28] Cullity BD, Cohen M. Elements of X-ray Diffraction. Addison-Wesley Publishing Company. Inc., Reading MA. 1978; 454.

[29] Alexandrou I, Papworth AJ, Rafferty B, Amaratunga GAJ, Kiely CJ, Brown LM. Calculation of the electronic structure of carbon films using electron energy loss spectroscopy.Ultramicroscopy. 2001; 90. 39–45.