استحکام خستگی آلومینیم 2024 بعد از عملیات زیر صفر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد آیت الله آملی- دانشکده مهندسی

2 دانشگاه آزاد اسلامی واحد جنوب تهران- دانشکده مهندسی مواد

چکیده

چالشِ تغییر خواص آلیاژ در حین استفاده از قطعات فوق ایمنی همواره مدنظر صنعتگران و به تبع آن، پژوهشگران بوده است. بدنه هواپیمای مسافربری (از جنس آلیاژ آلومینیم 2024) به کرّات در صعود و فرود به ترتیب تحت تاثیر سرمایش تا دمای 55- درجه سانتیگراد و گرمایش تا دمای محیط قرار می‌گیرد. منتهی تاثیر تغییرات دمایی فوق روی خواص کششی و مقاومت خستگی نامعلوم است. در این پژوهش در آزمایشگاه، شرایط کار آلیاژ بدنه هواپیما شبیه‌سازی شده و سپس تغییرات ریزساختار و به تبع آن، تغییرات مقاومت کششی و سختی پس از نگهداری به مدت 10 و 4 ساعت به ترتیب در دماهای 60- و 196- درجه سانتیگراد مطالعه شده است. نتایج نشان داده است که با انجام عملیات زیرصفر، سختی تقریبا بدون تغییر است اما خواص کششی نسبت به نمونه شاهد افزایش یافته و زمانیکه سرعت سرد کردن آهسته (کمتر از 1 درجه در دقیقه) بوده است بهبودی بیشتری در خواص کششی حاصل شده است. درحالیکه، با انجام عملیات زیرصفر، مقاومت خستگی نمونه های زیرصفر شده نسبت به نمونه شاهد، حداقل 20درصد کاهش می یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Fatigue Strength of Aluminum 2024 after Sub Zero Treatment

نویسندگان [English]

  • Seyed Ebrahim Vahdat 1
  • Hadi Nazarian 2
1 Islamic Azad University, Ayatollah Amoli Branch, Department of Engineering
2 Islamic Azad University, Tehran Jonob Branch, Department of Materials Engineering
چکیده [English]

Challenge of change of alloy properties during service life of extra safety parts was always considered by industrialists and consequently researchers. Fuselage and wings of airplane repeatedly in ascent and descent is affected respectively by cooling to -55 0C and heating to environment temperature. Hence, the effect of above temperature changes on tensile and fatigue properties is unknown. In this study in laboratory, the situation of airplane body working is simulated and then the changes of microstructure and consequently the changes of tensile properties and hardness after holding for 10 and 4 hours were studied respectively in temperature -60 and -196 0C. Results showed that by using of sub-zero treatment, hardness is without change but tensile properties are increased to control sample and when the cooling rate was low (less than 1 degree per minute), more improvement will be achieved in tensile properties. While results showed that by using of sub-zero treatment, fatigue strength is decreased at least 20% to control sample

کلیدواژه‌ها [English]

  • Population density of particles
  • Liquid nitrogen
  • Sub-Zero treatment
  • Fatigue limit

 

[1]        Challen B, Baranescu R. Diesel Engine Reference Book: Butterworth-Heinemann; 1999. 682 p.

[2]        Polmear I. Light Alloys. 4th ed: Butterworth-Heinermann;  2005. 416 p.

[3]        Nayan N, Narayana Murty SVS, Jha AK, Pant B, Sharma SC, George KM, et al. Mechanical properties of aluminium–copper–lithium alloy AA2195 at cryogenic temperatures. Materials & Design. 2014;58:445-50.

[4]        Nayan N, Narayana Murty SVS, Mukhopadhyay AK, Prasad KS, Jha AK, Pant B, et al. Ambient and cryogenic tensile properties of AA2195T87 sheets with pre-aging cold work by a combination of cold rolling and stretching. Materials Science and Engineering: A. 2013;585:475-9.

[5]        Li CM, Cheng NP, Chen ZQ, Guo N, Zeng SM. Deep-cryogenic-treatment-induced phase transformation in the Al-Zn-Mg-Cu alloy. International Journal of Minerals, Metallurgy and Materials. 2015;22(1):68-77.

[6]        Vahdat SE, Nategh S, Mirdamadi S. Microstructure and tensile properties of 45WCrV7 tool steel after deep cryogenic treatment. Materials Science and Engineering: A. 2013;585:444-54.

[7]        Vahdat SE, Nategh S, Mirdamadi S. Microstructure and Tensile Toughness Correlation of 1.2542 Tool Steel after Deep Cryogenic Treatment. Procedia Materials Science. 2014;6:202-7.

[8]        Niaki KS, Vahdat SE. Fatigue Scatter of 1.2542 Tool Steel after Deep Cryogenic Treatment. Materials Today: Proceedings. 2015;2(4–5):1210-5.

[9]        Schneider R, Grant RJ, Sotirov N, Falkinger G, Grabner F, Reichl C, et al. Constitutive flow curve approximation of commercial aluminium alloys at low temperatures. Materials & Design. 2015;88:659-66.

[10]      Shahsavari A, Karimzadeh F, Rezaeian A, Heydari H. Significant Increase in Tensile Strength and Hardness in 2024 Aluminum Alloy by Cryogenic Rolling. Procedia Materials Science. 2015;11:84-8.

[11]      Sotirov N, Falkinger G, Grabner F, Schmid G, Schneider R, Grant RJ, et al. Improved Formability of AA5182 Aluminium Alloy Sheet at Cryogenic Temperatures. Materials Today: Proceedings. 2015;2, Supplement 1:S113-S8.

[12]      Meng XK, Zhou JZ, Tan WS, Su C, Huang S. Reening mechanism of laser shock wave in Al-Cu alloy at liquid nitrogen temperature. Guangxue Jingmi Gongcheng/Optics and Precision Engineering. 2016;24:245-51.

[13]      Murugappan S, Arul S, Narayanan SK. An Experimental Study on Turning of AL6063 under Cryogenic Pre Cooled Condition. Procedia CIRP. 2015;35:61-6.

[14]      Zhang X, Mu H, Huang X, Fu Z, Zhu D, Ding H. Cryogenic Milling of Aluminium-lithium Alloys: Thermo-mechanical Modelling towards Fine-tuning of Part Surface Residual Stress. Procedia CIRP. 2015;31:160-5.