تاثیر سیکل عملیات حرارتی بر ریزساختار و خواص کششی دمای محیط نازل ردیف اول‌ مستعمل توربین‌گاز از جنس سوپرآلیاژ پایه نیکل IN738LC

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مدیر تحقیق و توسعه شرکت مهندسی موادکاران

2 معاون مهندسی شرکت مهندسی موادکاران

3 کارشناش واحد بازسازی شرکت مهندسی موادکاران

4 کارشناس واحد تحقیق و توسعه شرکت مهندسی موادکاران

چکیده

نازل‌های توربین گاز به دلیل قرار‌گیری در شرایط بحرانی از تنش و درجة حرارت بالا دچار زوال ساختاری شده که این مساله افت خواص مکانیکی قطعات را به دنبال دارد. برخی از تغییرات ریزساختاری ایجاد شده را می‌توان با عملیات حرارتی مجدد آلیاژ به حالت اولیه برگرداند و از این طریق عمر مفید آلیاژ را افزایش داد. در این تحقیق، ریز ساختار نمونه‌هایی از نازل ردیف اول مستعمل توربین گاز 160 مگاواتی از جنس سوپرآلیاژ پایه نیکل IN738LC با 33000 ساعت کارکرد معادل تهیه شد. سپس ریزساختار آنها قبل و بعد از اعمال سیکل‌های مختلف عملیات حرارتی با استفاده از میکروسکوپ‌های نوری و الکترونی روبشی مورد بررسی قرار گرفت. بررسی‌ها بر روی مشخصه‌های ساختاری نظیر اندازه و توزیع فازهای رسوبی از قبیل فازγ΄، کاربیدهای داخل و مرزدانه و همچنین تغییرات مورفولوژی آنها صورت گرفت. تصاویر ریزساختاری نشان می‌دهد که اعمال سیکل عملیات حرارتی انحلال کامل به همراه سیکل عملیات حرارتی استاندارد، در مقایسه با اعمال سیکل حرارتی استاندارد به تنهایی، اندازه و توزیعی مناسب تری از ذرات فاز γ΄ و کاربیدها مشابه ساختار اولیه آلیاژ بوجود می‌آورد. همچنین جهت اطمینان از دستیابی به ریزساختار مطلوب، آزمایش‌ کشش نیز در دمای محیط بر روی نمونه‌های عملیات حرارتی شده، انجام شد. خواص کششی دمای محیط نمونه‌های عملیات حرارتی شده در شرایط انحلال کامل، 8% در استحکام تسلیم، 12% در استحکام نهایی و 100% در پارامتر ازدیاد طول نسبی نسبت به سیکل عملیات حرارتی استاندارد افزایش داشته که با مشخصه‌های ساختاری بهتر بدست آمده در شرایط سیکل عملیات حرارتی انحلال کامل، همسو می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Heat treatment cycles on Microstructure and Room Temperature Tensile Properties of Exposed Gas Turbine First Stage Nozzle made of Nickel Base Superalloy IN738LC

نویسندگان [English]

  • Ali Mohammad Kolagar 1
  • Mohammad Cheraghzadeh 2
  • Narges Tabrizi 4
1 Research and development Manager at MavadKaran Engineering Company
2 Deputy of engineering
3 Repairing Expert at Mavadkaran Engineering Company
4 Expert of Research and Development Department
چکیده [English]

The degradation mechanisms are occurred in gas turbine nozzle imposed in the critical high stress and temperature. These mechanisms could lead to reduce the service life and failure. Rejuvenation heat treatment could recover some microstructural changes to the initial state and increase the service life. In this paper, the heat treatment influence on the microstructure of the first-stage gas turbine nozzle made of IN738LC was studied after 33,000 hr of operation in a 160 MW gas turbine. The microstructure was investigated by optical and scanning electron microscopes to show the changes of the precipitated phases size, distribution morphology. Precipitated phases are γ' and carbides in grain boundaries or inside grains. The results show the proper size and distribution of the γ' and carbides similar to the initial structure obtained by the combination of the full solution heat treatment and the standard heat treatment compared. Furthermore, the tensile test was performed to evaluate the performance of heat treated sample. The tensile results of full Solution heat treatment cycle confirm the microstructural observation and show the higher tensile properties (8% in 0.2%YS, 12% in UTS & 100% in El) Related to the Standard heat treated samples.

کلیدواژه‌ها [English]

  • "Gas turbine nozzle"
  • "Rejuvenation"
  • "Heat treatment"
  • "IN738LC Superalloy"

 [1]. A. Malekbarmi, Sh. Zangeneh, A. Roshani, "Assessment of premature failure in a first stage gas turbine nozzle", Engineering Failure Analysis, Vol. 18, 2011.

[2]. Tim J Carter,“Common failures in gas turbine blades”, Engineering Failure Analysis 12, 2005.

[3]. R. A. Steven and P. E. J. Flewitt, "Microstructure Change Which Occur During Isothermal Heat Treatment of Ni-Base Superalloy IN783", Mat. Sci., Vol. 13, 1978.

[4].R. A. Steven & P. E. J. Flewith,"Intermediate Regenerative Heat Treatment For Extending The Creep Life of Superalloy IN738", Mataterial Scienec and Engineering, 1981.

[5]. A. Davin, C.L. Mertens, P. Vierset & P.  Louis, “Microstructural Damage Induced during the Repair Process”, Proceeding of a Conference Held in liege, 1986.

[6]. Heat Resistant Materials, “Properties of Superalloy”, ASM Specialty Handbook, ASM International, 1997.

[7]. C. T. Sims, N. S. Stolloff, W. C. Hagel, "Superalloys II", John Wiley and Sons, 1987.

[8]. R. F. Decker, C. T. Sims, W. C. Hagel, "The Superalloy I", John Wiley & Sons, 1984.

[9]. E. F. Bradley, “Superalloys A technical guide”, ASM, 1988.

[10]. S. Hosseini, et. al, “Microstructural evolutionin DamagedIN738LC Alloy During Various of Rejuvenation Heat Treatments Steps”, Journal of Alloys and Compounds, Vol. 512, 2012.

[11]. A. K. Koul, J.P. Imariageon, R.Castillo, "Rejuvenation of Service-Exposed IN738 Turbine Blades", the Superalloy, 1988.

[12]. Siemens Documents: “V94.2 Gas Turbine manual”.

[13]. Siemens Documents: “Process Specification of Heat Treatment Cycles, Soliution, Aging and Coating Diffusion”, 1988.

]13[. علی‌محمد کلاگر، "تخمین عمر باقیمانده قطعات داغ (پره متحرک ردیف اول توربین گاز فریم 5)"، پایان نامه کارشناسی ارشد، دانشگاه علم و صنعت ایران، بهمن ماه 1379.

[15]. An American National Standard, “Standard Test Methods forTension Testing of MetallicMaterials”, E8/E8M – 09, 2010.

[16]. A. K. Koul, J. P. Imariageon, V. R. Parameswaran, W. Wallace,”Advances in high temperature structural materials and coatings”, A publication from national  reasech council of Canada, Ottawa, 1994.

[17]. A. K. Koul, R. Castillo, “Assessment of service indused microstructrural damage and Rejuvenation in turbine blades”, Metallurical Transations A, Vol.19 A, 1988.

[18]. Y .H. Zhany, Q. Z. Chen and D. M. nowles, Material Science Technology, Vol.17, 2001.

[19]. T. Link and M. F. Kniepmeier, Metals Transaction A, Vol.23 A, 1992.

[20]. A. K. Koul, R. Castillo, “Creep behaviour of industrial turbine blade material”, ASM, Material congree, 1993.

[21]. K. M. Dlelargy, S. W. K. Shaw & G. D. W. Smith,” effect of Heat treatment on mechanical properties of Ni-Base superalloy IN939”, material science and technology, Vol.2, 1986.

 [22]. D. lestrat, J. L. strudel, “Sensivity of mechanical properties of Ni-base alloys to cooling rates”, High temperature alloys, Elsevier applied schience, 1987.