تأثیر سیلیسیم بر ریزساختار و مقاومت به سایش چدن خاکستری آلومینیم دار

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیأت علمی/ دانشگاه شهید رجایی

2 دانش آموخته دانشگاه آزاد اسلامی- واحد خمینی شهر

چکیده

چدن خاکستری جزو معمولترین و مهمترین مواد مهندسی هستند که نقش قابل توجه و کاربردهای فراوانی در صنایع مختلف، از جمله خودروسازی و ساخت ماشین آلات دارند و هنوز هم مورد توجه محققین به منظور بهبود خواص و حفظ جایگاه این فلز در میان مواد مهندسی می باشد. در این تحقیق، ریزساختار چدن خاکستری غیر آلیاژی و همچنین چدن های خاکستری محتوی 4% وزنی آلومینیوم با مقدار متغیر 1 تا 4% وزنی سیلیسیم مورد بررسی قرار گرفته و مقاومت به سایش آنها به روش پین بر روی دیسک ارزیابی شد. نتایج نشان داد که افزودن آلومینیوم به چدن خاکستری باعث تشکیل فاز فریت می گردد که کاهش سختی را به دنبال دارد. همچنین افزودن سیلیسیم تا 2% وزنی به چدن خاکستری آلومینیم دار، موجب تشدید در تشکیل فاز فریت شده و افزودن بیش از 2% وزنی، موجب تشکیل ترکیب بین فلزی Fe-Al-Si می شود. در چدن خاکستری محتوی 3% و 4% وزنی سیلیسیم، با ثابت بودن درصد آلومینیوم در 4% وزنی، به دلیل افزایش درصد فاز بین فلزی، سختی نیز افزایش می آید. نتایج حاصل از آزمون سایش با تأیید نتایج ریزساختار و سختی، مؤید نرخ سایش کمتر در چدن های محتوی فاز بین فلزی بودند. در مقابل کمترین مقاومت سایشی در چدن آلومینیم دار محتوی 2% سیلیسیم دیده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of silicon on microstructure and wear resistance of aluminum bearing gray cast iron

نویسندگان [English]

  • Hassan Jafari 1
  • Ehsan Sanatizadeh 2
1 Faculty member/Shahid Rajaee University
چکیده [English]

Gray cast iron is among the most common and important engineering material that plays a significant role and has many applications in various industries, including the automotive and machinery manufacturing. It still attracts researchers’ interest to improve its properties and maintain its position among the engineering materials. In this research, the microstructure of plain cast iron as well as those containing 4 wt% aluminum with different amounts of silicon, 1 to 4 wt%, was studied. Pin-on-disc method was used to evaluate the wear resistance of the cast irons. The results showed that the addition of aluminum to gray cast iron brings about the formation of ferrite phase, which accompanies a decrease in hardness value. In addition, the increase in silicon content in aluminum bearing cast iron up to 2wt% intensifies the formation of ferrite phase, while the further increase to 3 wt% results in emerging a Fe-Al-Si intermetallic compound. In gray cast iron with constant 4 wt% aluminum, increasing silicon content to 3 wt% and 4 wt% leads to improve the hardness value due to the increased percentage of intermetallic phase. Confirming microstructure evolution as well as hardness values, the results of wear experiment approved lower wear rate in cast irons containing intermetallic phase. In contrast, the lowest wear resistance was observed in aluminum bearing cast iron containing 2 wt% silicon.

کلیدواژه‌ها [English]

  • Gray cast iron
  • Aluminum
  • Silicon
  • Microstructure
  • Wear
 
[1] Y. E. Mangulkar, S. C. Borse, Effect of addition of inoculants on mechanical properties & wear behaviour of grey cast iron, International Journal of Innovative Research in Science, Engineering and Technology, Vol. 5, pp. 1131-1139, 2016.
[2] A. SadeghiA. Moloodi, M. Golestanipour, M. MahdaviShahri, An investigation of abrasive wear and corrosion behavior of surface repair of gray cast iron by SMAW, Journal of Materials Research and Technology, Vol. 6, pp. 90-95, 2016.
[3] J. Yamabea, M. Takagia, T. Matsuia, T. Kimurab, M. Sasaki, Development of disc brake rotors for trucks with high thermal fatigue strength, JSAE Review, Vol. 23, pp. 105–112, 2002.
[4] A. Vadiraj, S. Tiwari, Effect of silicon on mechanical and wear properties of aluminium-alloyed gray cast iron, Journal of Materials Engineering and Performance, Vol. 23, pp. 3001–3006, 2014.
[5] G. Cueva, A. Sinatora, W. L. Guesser, A. P. Tschiptschin, Wear resistance of cast irons used in brake disc rotors, Wear, Vol. 255, pp. 1256–1260, 2003.
]6[ا. اسدی، م. عباسی، م. شامقلی، ارزیابی غیرمخرب ریزساختار چدن مقاوم به سایش نایهارد4 با استفاده از آزمون جریان گردابی، مهندسی متالورژی، دوره 18، شماره 59، صفحه 34-43، 1394
[7] A. R. Kiani-RashidD. V. Edmonds, Phase transformation study of aluminium-containing ductile cast irons by dilatometry, Materials Science and Engineering: A, Vol. 481–482, pp. 752–756, 2008.
[8] S. M. MostafaviKashani, S. M. A. Boutorabi, As-cast acicular ductile aluminum cast iron, Journal of Iron and Steel Research, International, Vol. 16, pp. 23-28, 2009.
[9] A. MalakizadiI. Sadik, L. Nyborg, Wear mechanism of CBN inserts during machining of bimetal aluminum-grey cast iron engine block, Procedia CIRP, Vol. 8, pp. 88-193. 2013.
[10] N. Haghdadi, B. Bazaz, H. R. Erfanian-Naziftoosi, A. R. Kiani-Rashid, Microstructural and mechanical characteristics of Al-alloyed ductile iron upon casting and annealing, International Journal of Minerals, Metallurgy and Materials, Vol. 19, pp. 812- 820, 2012.
[11]M. JasimKadhim, A. NaamaAbood, H. Zainalabidin, Microstructure and high temperature oxidation behavior of aluminum alloyed cast irons, Modern Applied Science, Vol. 4, pp. 130-135, 2010.
[12] A. I. García-Diez, C. Camba-Fabal, Á. Varela-Lafuente, V. Blázquez-Martínez, J. LuísMier-Buenhombre, B. Del Río-López, Influence of silicon on wear behaviour of “Silal” cast irons, DYNA, Vol. 81, pp. 216-221, 2014.
[13] I. Milosan, The manufacturing of a special wear-resistant cast iron used in automotive industry, 2nd World Conference On Business, Economics And Management- WCBEM 2013, Procedia - Social and Behavioral Sciences,Vol. 109, pp. 610-613, 2014
[14] N. Marumoto, H. Kashimura, K. Yoshida, T. Toyoda, T. Okane, M. Yoshida, Dynamic measurements of the load on gray cast iron castings and contraction of castings during cooling in furan sand molds, Journal of Materials Processing Technology, Vol. 237, pp. 48-54, 2016.
[15] A. Shayesteh-Zeraati, H. Naser-Zoshki, A. R. Kiani-Rashid, M. R. Yousef-Sani, The effect of aluminium content on morphology, size, volume fraction, and number of graphite nodules in ductile cast iron, in: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 224,  pp. 117-122, 2010. 
[16] M. S. Soiński, A. Jakubus, P. Kordas, K. Skurka, The effect of aluminium on graphitization of cast iron treated with cerium mixture”, Archives of Foundry Engineering, Vol. 14, pp. 95-100, 2014.
[17] K. Ankamma,Effect of trace elements (boron and lead) on the properties of gray cast iron, Journal of the Institution of Engineers (India): Series D, Vol. 95, pp. 19–26, 2014.
[18] A. Shayesteh-ZeraatiH. Naser-ZoshkiA. R. Kiani-Rashid, Microstructural and mechanical properties (hardness) investigations of Al-alloyed ductile cast iron, Journal of Alloys and Compounds, Vol. 500, pp. 129-133, 2010.
[19] A. R. Kiani-Rashid, D. V. Edmonds, Carbide precipitation in microstructure of austempered ductile irons containing 0.48% and 4.88% Al, International Journal of ISSI, Vol. 2, pp. 1-8, 2005.
[20] M. Sheikholeslami, S. M. A.Boutorabi, A research on the calculation of graphitization ability of gray cast iron, Iranian Journal of Materials Science & Engineering, Vol. 9, pp. 28-33, 2012.
[21] I. Ozdemir, T. Ueno, Y. Tsunekawa, M. Okumiya, Cast iron coatings containing graphite structure by atmospheric plasma spraying, Thermal Spray 2004: Advances in Technology and Application: Proceedings of the International Thermal Spray Conference, Osaka, Japan, pp. 298-303, 2004.