بررسی تغییرات تنش سیلان فولاد 60SPb20 در آزمایش فشار دمای بالا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مواد، دانشکده فنی مهندسی گلپایگان، دانشگاه صنعتی اصفهان، گلپایگان، ایران.

2 استادیار، دانشکده مهندسی مواد، دانشگاه صنعتی مالک اشتر، اصفهان، ایران.

3 کارشناسی ارشد، دانشکده مهندسی مواد، دانشگاه صنعتی مالک اشتر، اصفهان، ایران.

چکیده

هدف از این پژوهش مطالعه بررسی رفتار کارداغ فولاد خوش‌تراش 60SPb20 در شرایط آزمایش فشاری دمای بالا و یافتن روابط کمی تنش سیلان با پارامترهایی مثل نرخ کرنش و دما بر پایه مدل آرنیوسی است. بدین منظور آزمایش‌های فشار روی نمونه‌های استاندارد از آلیاژ، در بازه دمایی 800 تا oC 1050 و در نرخ کرنش ۰۰۱/۰ تا s-1 ۱ انجام شد. در آزمایشات فشار ضمن استفاده از روانکار دمای بالا، اثر اصطکاک بر تنش سیلان به کمک مدل اصلاحی حذف و منحنی‌های سیلان بدست آمده برای محاسبات مورد استفاده قرار گرفت. نتایج بدست آمده از منحنی‌های حاصل از آزمایش فشار داغ و بررسی‌های ریزساختاری نشان داد مکانیزم تبلور مجدد دینامیک باعث رخ دادن پدیده نرم شدن در دمای های بالا برای این فولاد است. در ضمن معادلات بنیادین فشار داغ با استفاده از پارامتر زنر- هولمن برای این فولاد تعیین شد. نتایج تغییرات تنش سیلان بر حسب دما در نرخ کرنشهای مختلف نشان داد انرژی فعال‌سازی تغییر شکل داغ برای فولاد خوش‌تراش 60SPb20، حدود kJ/mol 434 است. تفاوت بین این مقدار بدست آمده با فولادهای دیگری همچون فولاهای کم کربن و کربن متوسط و فولادهای ابزار و غیره تحلیل شد. نهایتا با محاسبه ثوابت لازم برای آلیاژ مذکور، رابطه تنش سیلان با پارامتر زنر- هولمن که برای پیش‌بینی رفتار تغییر شکل داغ در نرخ کرنش‌های بالاتر مورد استفاده است، تعیین شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of 60SPb20 steel flow stress changes in high-temperature compression tests

نویسندگان [English]

  • Morteza Hadi 1
  • Ehsan Mohammad Sharifi 2
  • Mohammad Samei 3
1 Assistant professor, Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran.
2 Assistant professor, Department of Materials Engineering, Malek-Ashtar University of Technology, Isfahan, Iran.
3 M.Sc. student, Department of Materials Engineering, Malek-Ashtar University of Technology, Isfahan, Iran.
چکیده [English]

The aim of this study was to investigate the behavior of 60SPb20 free-cutting steel at high-temperature compression tests and to find the relationships of flow stress with strain rate and temperature based on the Arrhenius model. For this purpose, compression tests were performed on standard samples of the alloy in the temperature range of 800 to 1050 °C and at a strain rate of 0.001 to 1 s-1. In addition to the use of high-temperature lubricant, the effect of friction on flow stress was eliminated by a modification model and obtained flow curves were applied for further calculations. The compression curves and microstructural studies showed that the dynamic recrystallization mechanism was responsible for softening of the alloys at high temperatures. Moreover, the constitutive equations of hot deformation were determined using the Zener-Hollomon parameter for this steel. The results of changing the flow stress versus temperature at different strain rates showed that the activation energy of hot deformation of 60SPb20 free-cutting steel was about 434 kJ/mol. The difference between this value and values of other steels such as low and medium carbon steels, tool steels, etc. was discussed. Finally, after calculating the required constants for the alloy, the relation of flow stress versus the Zener-Hollomon parameter was determined which can be used to predict hot deformation behavior at higher strain rates.

کلیدواژه‌ها [English]

  • 60SPb20 Free-cutting steel
  • Hot deformation behavior
  • Zener-Hollomon parameter
  • Dynamic recrystallization
 [1] Luiz NE, Machado ÁR. Development trends and review of free-machining steels. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2008 Feb 1; 222(2):347-60.
[2]  Li Z, Wu D. Effect of free-cutting additives on machining characteristics of austenitic stainless steels. Journal of Materials Science & Technology. 2010 Jan 1;26(9):839-44.
[3] Puncreobutr C, Lee PD, Kaye M, Balint D, Farrugia D, Connolley T, Lin J. Quantifying damage accumulation during the hot deformation of free-cutting steels using ultra-fast synchrotron tomography. InIOP Conference Series: Materials Science and Engineering 2012 Jul 3 (Vol. 33, No. 1, p. 012038). IOP Publishing.
[4] Yang Y, Zhao XM, Dong CY, Zhao XY. Influence of hot deformation and precipitates on the recrystallization of Nb-V-Ti free-cutting steel. Metals. 2020 Dec;10(12):1587.
[5] Kiu MF. Hot deformation and damage of Free Cutting Steel (Doctoral dissertation, University of Sheffield).
[6] Li Y, Suzuki T, Tang N, Koizumi Y, Chiba A. Microstructure evolution of SUS303 free-cutting steel during hot compression process. Materials Science and Engineering: A. 2013 Oct 20;583:161-8.
[7] Suzuki T, Li Y, Koizumi Y, Chiba A. Quantitative evaluation in hot workability of SUS303 free-cutting steel. Materials Science and Engineering: A. 2013 Feb 15;563:117-24.
[8] Sridhar G, Das SK, Mukhopadhyay NK. Failure analysis of low carbon free-cutting steel wire rods. Engineering Failure Analysis. 1999 Jun 1;6(3):155-72.
[9] Hu SD, Jiang YN, Zhou C, Li LX, Wang XY, Wang C. Prediction and Prevention of Cracks in Free-Cutting Stainless Steel Bar Forming. Metallurgical and Materials Transactions B. 2020 Aug;51(4):1687-96.
[10] Naghdy S, Akbarzadeh A. Characterization of dynamic recrystallization parameters for a low carbon resulfurized free-cutting steel. Materials & Design. 2014 Jan 1;53:910-4.
[11] Crupi V, Epasto G, Guglielmino E, Risitano G. Investigation of very high cycle fatigue by thermographyc method. Frattura ed Integrità Strutturale. 2014 Sep 10;8(30):569-77.
[12] Wise ML, Milovic R. Ranges of application of free-cutting steels and recommended tool materials. Materials science and technology. 1988 Oct 1;4(10):933-43.
[13] Zhou Y, Liu Y, Zhou X, Liu C, Yu J, Huang Y, Li H, Li W. Precipitation and hot deformation behavior of austenitic heat-resistant steels: A review. Journal of Materials Science & Technology. 2017 Dec 1;33(12):1448-56.
[14] Ebrahimi R, Najafizadeh A. A new method for evaluation of friction in bulk metal forming. Journal of Materials Processing Technology. 2004 Oct 20;152(2):136-43.
[15] Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena. Elsevier; 2012 Dec 2.
[16] Zhong L, Wang B, Hu C, Zhang J, Yao Y. Hot Deformation Behavior and Dynamic Recrystallization of Ultra High Strength Steel. Metals. 2021 Aug;11(8):1239.
[17] Hadi M, Kamali AR. Investigation on hot workability and mechanical properties of modified IC-221M alloy. Journal of alloys and compounds. 2009 Oct 19;485(1-2):204-8.
[18] Jung JY. Effects of Homogenization Treatment, Mn/S ratio and δ-ferrite on the Hot Workability of Free-Machining 303-series Austenitic Stainless Steels. Journal of the Korean Institute of Metals and Materials. 2017;55(12):880-7.
[19] Samani MN, Shokuhfar A, Kamali AR, Hadi M. Production of a nanocrystalline Ni3Al-based alloy using mechanical alloying. Journal of alloys and compounds. 2010 Jun 18;500(1):30-3.
[20] Jia D, Sun W, Xu D, Yu L, Xin X, Zhang W, Qi F. Abnormal dynamic recrystallization behavior of a nickel based superalloy during hot deformation. Journal of Alloys and Compounds. 2019 May 30;787:196-205.
[21] Mirzadeh H. Developing constitutive equations of flow stress for hot deformation of AZ31 magnesium alloy under compression, torsion, and tension. International Journal of Material Forming. 2019 Jul;12(4):643-8.
[22] Kumar D, Kumar S, Nath SK. Study on Hot Deformation Behavior of High Carbon Low Alloy Steel by Constitutive and ANN Modeling and Development of Processing Maps. Materials Performance and Characterization. 2020 Jun 4;9(2).
[23] Xu X, Wang X, Li J, Yan Z, Liu D, Liu Q, Shang C, Fu J, Shen P. Hot workability characteristics of low-density Fe–4Al–1Ni ferritic steel. Materials Science and Engineering: A. 2021 Jan 2;799:140257.
[24] Akbarzadeh A, Naghdy S. Hot workability of a high carbon high chromium tool steel. Materials & Design. 2013 Apr 1;46:654-9.
[25] Pierce DT, Field DM, Limmer KR, Muth T, Sebeck KM. Hot deformation behavior of an industrially cast large grained low density austenitic steel. Materials Science and Engineering: A. 2021 Sep 21;825:141785.
[26] Boroumand K, Hadi M, Vafaei R. Hot Deformation Behavior and Constitutive Modelling of a Medium-Carbon Structural Steel. Physics of Metals and Metallography. 2021 Aug 18:1-0.
[27] Zhao H, Qi J, Liu G, Su R, Sun Z. A comparative study on hot deformation behaviours of low-carbon and medium-carbon vanadium microalloyed steels. Journal of Materials Research and Technology. 2020 Sep 1;9(5):11319-31.
[28] Salehiyan D, Samei J, Amirkhiz BS, Hector LG, Wilkinson DS. Microstructural evolution during deformation of a QP980 steel. Metallurgical and Materials Transactions A. 2020 Sep;51(9):4524-39.