چاپ سه‌بعدی ابرآلیاژ اینکونل 625 به روش ذوب لیزر انتخابی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گرایش جوشکاری، دانشکدة مهندسی متالورژی و مواد، پردیس دانشکده‌های فنی دانشگاه تهران، تهران، ایران.

2 استادیار دانشکدة مهندسی متالورژی و مواد، پردیس دانشکده‌های فنی دانشگاه تهران، تهران، ایران.

3 استاد دانشکدة مهندسی متالورژی و مواد، پردیس دانشکده‌های فنی دانشگاه تهران، تهران، ایران.

چکیده

ساخت افزایشی یا چاپ سه‌بعدی به‌عنوان روشی جدید به‌منظور تولید قطعات مهندسی، در دهه­های اخیر مورد توجه قرارگرفته است. این روش بر پایة اتصال مواد اولیه به‌صورت لایه به لایه به‌منظور تولید قطعات سه‌بعدی است که در مقابل روش ساخت کاهشی بر پایة ماشین‌کاری قرار دارد. در میان روش‌های مختلف ساخت افزایشی ذوب لیزر انتخابی به‌ موجب کیفیت بالای قطعات تولیدی، برای ساخت قطعات فلزی از پودرهای آن‌ها مورد توجه ویژه­ای قرارگرفته است. در این میان آلیاژهای اینکونلی بویژه اینکونل 625 با توجه به استفادة گسترده در کاربردهای مهندسی، مشخصه­های ذاتی و جوش­پذیری مناسب، گزینه­ای مناسب برای این فرآیند به ‌حساب می­آیند. از همین رو پس از تعیین متغیرهای بهینه، سه سری نمونة بهینه با مقادیر حرارت ورودی خطی 0.125، 0.150 و 0.175 ژول بر میلی­متر ساخته ‌شده و خواص مکانیکی و ریزساختار آن‌ها مورد بررسی قرار گرفت. نتایج نشان داد که با افزایش حرارت ورودی، دانه­ها رشد نموده و تغییر در دانه­بندی و توزیع عناصر آلیاژی صورت گرفته است؛ این موارد به تغییر در دوره­های حرارتی اعمالی بر قطعات نسبت داده شد. خواص مکانیکی قطعات تولید شده نسبت به یکدیگر تغییرات قابل ‌ملاحظه­ای نشان نداد لیکن به ‌مراتب برتر از نمونه­های ریختگی و قابل قیاس با نمونه­های کارشدة این آلیاژ بود. در همین راستا بررسی سختی­سنجی قطعات دال بر مقادیر سختی به‌ مراتب بالاتر از قطعات تولید شده نسبت به نمونه­های ریختگی داشت. مطالعات میکروسکوپی نشان داد که این برتری خواص مکانیکی عمدتاً ناشی از ریزدانگی قطعات تولیدی است.

کلیدواژه‌ها


عنوان مقاله [English]

3D-Printing of Inconel-625 Superalloy by Selective Laser Melting

نویسندگان [English]

  • Khashayar Moeinfar 1
  • Farzad Khodabakhshi 2
  • Seyyed Farshid Kashani-bozorg 3
1 M.Sc. Student, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
2 Assistant Professor, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
3 Professor, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
چکیده [English]

Additive manufacturing as the process of manufacturing engineering parts in a layer by layer manner, has been used for a few decades. Between different additive methods, selective laser melting is one of the most promising techniques. This is due to the high manufacturing quality specially when fabricating metallic compounds. Among different metallic compounds Inconel 625 has one of the most compatible alloys with additive processes due to the high strength properties, excellent weldability. Achieving properties in as built parts comparable to that of the conventionally manufactured counterparts, has been a challenge. These samples were built with linear heat input of 0.125, 0.150 and 0.175 joules per millimeter. Data suggested and increase in average grain size with increase in applied heat input. Also due to the different heating cycles specimen built with different heat input experience, grain structure and elements distribution in the specimen has changed. Also variation in heat input didn’t cause significant difference in mechanical properties of the samples; however, they have exhibited higher mechanical properties compared to casted counterparts and shown properties comparable to that of the wrought parts. Manufactured parts had significantly higher hardness compared to conventionally manufactured counterparts even that of the wrought ones. Based on optical microscopy studies, higher mechanical properties of the specimen can be considered a result of the fine grain size of the fabricated parts.

کلیدواژه‌ها [English]

  • 3D-printing
  • Additive manufacturing
  • Selective laser melting
  • Inconel 625
[1]        J. Alcisto et al., "Tensile properties and microstructures of laser-formed Ti-6Al-4V," Journal of materials engineering and performance, vol. 20, no. 2, pp. 203-212, 2011.
[2]        W. E. Frazier, "Metal additive manufacturing: a review," Journal of Materials Engineering and Performance, vol. 23, no. 6, pp. 1917-1928, 2014.
[3]        I. Gibson, D. W. Rosen, and B. Stucker, Additive manufacturing technologies: Rapid prototyping to direct digital manufacturing (Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing). 2010, pp. 1-459.
[4]        X. Yan and P. Gu, "A review of rapid prototyping technologies and systems," Computer-Aided Design, vol. 28, no. 4, pp. 307-318, 1996.
[5]        J. J. Beaman and C. R. Deckard, "Selective laser sintering with assisted powder handling," ed: Google Patents, 1990.
[6]        W. E. Frazier, "Direct digital manufacturing of metallic components: vision and roadmap," in 21st Annual International Solid Freeform Fabrication Symposium, Austin, TX, Aug, 2010, pp. 9-11.
[7]        K. Vartanian and T. McDonald, "Accelerating industrial adoption of metal additive manufacturing technology," JOM, vol. 68, no. 3, pp. 806-810, 2016.
[8]        L. E. Murr et al., "Metal fabrication by additive manufacturing using laser and electron beam melting technologies," Journal of Materials Science & Technology, vol. 28, no. 1, pp. 1-14, 2012.
[9]        D. L. Bourell, "Perspectives on additive manufacturing," Annual Review of Materials Research, vol. 46, pp. 1-18, 2016.
[10]      D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, "Laser additive manufacturing of metallic components: materials, processes and mechanisms," International materials reviews, vol. 57, no. 3, pp. 133-164, 2012.
[11]      D. Herzog, V. Seyda, E. Wycisk, and C. Emmelmann, "Additive manufacturing of metals," Acta Materialia, vol. 117, pp. 371-392, 2016.
[12]      W. E. King et al., "Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges," Applied Physics Reviews, vol. 2, no. 4, p. 041304, 2015.
[13]      E. O. t. Olakanmi, R. Cochrane, and K. Dalgarno, "A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties," Progress in Materials Science, vol. 74, pp. 401-477, 2015.
[14]      W. J. Sames, F. List, S. Pannala, R. R. Dehoff, and S. S. Babu, "The metallurgy and processing science of metal additive manufacturing," International Materials Reviews, vol. 61, no. 5, pp. 315-360, 2016.
[15]      T. DebRoy et al., "Additive manufacturing of metallic components – Process, structure and properties," Progress in Materials Science, Review vol. 92, pp. 112-224, 2018.
[16]      C. Selcuk, "Laser metal deposition for powder metallurgy parts," Powder Metallurgy, vol. 54, no. 2, pp. 94-99, 2011.
[17]      S. M. Thompson, L. Bian, N. Shamsaei, and A. Yadollahi, "An overview of Direct Laser Deposition for additive manufacturing; Part I: Transport phenomena, modeling and diagnostics," Additive Manufacturing, vol. 8, pp. 36-62, 2015.
[18]      N. Shamsaei, A. Yadollahi, L. Bian, and S. M. Thompson, "An overview of Direct Laser Deposition for additive manufacturing; Part II: Mechanical behavior, process parameter optimization and control," Additive manufacturing, vol. 8, pp. 12-35, 2015.
[19]      A. Yadollahi and N. Shamsaei, "Additive manufacturing of fatigue resistant materials: Challenges and opportunities," International Journal of Fatigue, vol. 98, pp. 14-31, 2017.
[20]      J. O. Milewski, Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewelry. Springer, 2017.
[21]      S. Kelly and S. Kampe, "Microstructural evolution in laser-deposited multilayer Ti-6Al-4V builds: Part II. Thermal modeling," Metallurgical and Materials Transactions A, vol. 35, no. 6, pp. 1869-1879, 2004.
[22]      Z. Wang, T. A. Palmer, and A. M. Beese, "Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing," Acta Materialia, vol. 110, pp. 226-235, 2016.
[23]      Z. Baicheng et al., "Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing," Materials & Design, vol. 116, pp. 531-537, 2017.
[24]      T. DebRoy et al., "Additive manufacturing of metallic components–process, structure and properties," Progress in Materials Science, vol. 92, pp. 112-224, 2018.
[25]      H. Roth, C. Davis, and R. Thomson, "Modeling solid solution strengthening in nickel alloys," Metallurgical and Materials Transactions A, vol. 28, no. 6, pp. 1329-1335, 1997.
[26]      J.R. Poulin, V. Brailovski, and P. Terriault, "Long fatigue crack propagation behavior of Inconel 625 processed by laser powder bed fusion: Influence of build orientation and post-processing conditions," International Journal of Fatigue, vol. 116, pp. 634-647, 2018.
[27]      O. A. Hilders, N. Zambrano, and R. Caballero, "Microstructure, strength, and fracture topography relations in AISI 316L stainless steel, as seen through a fractal approach and the hall-petch law," International Journal of Metals, vol. 2015, 2015.