بررسی سینتیکی فرایند اکسیداسیون پودر آلیاژی ‏Mg-0.15Al‏ تحت شرایط حرارت‌دهی غیرهم‌دما

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی ارشد، گروه مهندسی مواد و متالورژی، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران.

2 استادیار، گروه مهندسی مواد و متالورژی، دانشکده مهندسی معدن و متالورژی، دانشگاه یزد، یزد، ایران.

چکیده

در این پژوهش سینتیک فرایند اکسیداسیون پودر ‏Mg-0.15Al‏ تحت شرایط حرارت‌دهی غیر هم‌دما با هدف تعیین ‏متغیرهای سه‌گانه شامل (انرژی فعالسازی، ضریب پیش‌نمایی و مدل واکنش) مورد بررسی قرار گرفت. جهت تعیین ‏مکانیزم این تحول، محصولات حاصل از این فرایند با استفاده از آزمون پراش پرتوی ایکس ‏‎(XRD)‎‏ و میکروسکوپ ‏الکترونی روبشی ‏‎(SEM)‎‏ به ترتیب مورد بررسی‌های فازشناسی و ریزساختاری قرار گرفتند. نتایج حاصل نشان دادند که ‏در طی این فرایند، فازهای اولیه منیزیم ‏‎(Mg)‎‏ و گاما ‏‎(Al12Mg17)‎‏ به فازهای اکسید منیزیم ‏‎(MgO)‎‏ و اسپینل ‏‎(MgAl2O4)‎‏ ‏تبدیل می‌شوند. وقوع تحولات مختلف در حین فرایند اکسیداسیون نیز از طریق تغییرات شکل ظاهری ذرات در طی ‏مشاهدات ریزساختاری به خوبی تایید شد. همچنین به منظور تعیین متغیرهای سینتیکی این فرایند از روش‌های ‏هم‌تبدیلی و انطباقی معکوس و مستقیم استفاده شد. نتایج حاصل نشان داد که مکانیزم این واکنش تحت کنترل جوانه‌زنی ‏و رشد بوده و انرژی فعالسازی ‏آن در محدوده ‏kJ/mol‏ 150 تا ‏kJ/mol‏ 320 محاسبه شد.‏

کلیدواژه‌ها


عنوان مقاله [English]

Non-Isothermal Kinetic Analysis of Oxidation of Mg-0.15Al Alloy ‎Powder

نویسندگان [English]

  • Mehran Shafi Hosseini 1
  • Saeed Hasani 2
1 MSc, Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran.
2 Assistant professor, Department of Mining and Metallurgical Engineering, Yazd University, Yazd, Iran.
چکیده [English]

In the present study, kinetic of oxidation process in Mg-0.15Al powders under non-isothermal condition was ‎studied to determine the empirical kinetic triplets (activation energy (E), pre-exponential factor (A), and ‎kinetic models of reaction (f(α))). In order to determine the mechanism of this process, the phase and ‎structural studies were done by using X-ray diffraction (XRD) and scanning electron microscopy (SEM) ‎methods, respectively. The obtained results showed that magnesium oxide (MgO) and spinel (MgAl2O4) ‎phases were formed from the initial Mg and Al12Mg17 phases during the oxidation process. Microstructural ‎observation confirmed the phenomena occurring during oxidation by the evolution of morphology of ‎particles. Also, the isoconversional, invariant kinetic parameters (IKP) and fitting models were used to ‎investigate the kinetic of this process and to determine the kinetic parameters. The obtained results revealed ‎that this reaction is controlled by a nucleation and growth mechanism with the activation energy (Eα) in the ‎range of 150-320 kJ/mol.‎

کلیدواژه‌ها [English]

  • Mg-0.15Al alloy powder
  • kinetic
  • Oxidation
  • Activation Energy
  • Mechanism
[1]      Shoshin, Y.L., Mudryy, R.S., Dreizin, E.L., "Preparation and characterization of energetic Al-Mg mechanical alloy powders", Combustion and Flame, Vol. 128, pp. 259–269, 2002.
[2]      Schoenitz, M., Dreizin, E.L., "Structure and properties of Al–Mg mechanical alloys", Journal of Materials Research, Vol. 18, pp. 1827–1836, 2003.
[3]      Hasani, S., Panjepour, M., Shamanian, M., "Non-isothermal kinetic analysis of oxidation of pure aluminum powder particles", Oxidation of Metals, Vol. 81, pp. 299–313, 2014.
[4]      Hasani, S., Panjepour, M., Shamanian, M., "The oxidation mechanism of pure aluminum powder particles", Oxidation of Metals, Vol. 78, pp. 179–195, 2012.
[5]      Hasani, S., Soleymani, A.P., Panjepour, M., Ghaei, A., "A tension analysis during oxidation of pure aluminum powder particles: Non-isothermal condition", Oxidation of Metals, Vol. 82, pp. 209–224, 2014.
[6]      Aly, Y., Hoffman, V.K., Schoenitz, M., Dreizin, E.L., "Reactive, mechanically alloyed Al·Mg powders with customized particle sizes and compositions", Journal of Propulsion and Power, Vol. 30, pp. 96–104, 2014.
[7]      Karimpour, M., Eatezadi, S.R., Hasani, S., Ghaei, A., "The oxidation mechanism of pure magnesium powder particles: a mathematical approach", Metallurgical and Materials Transactions B, Vol. 50, pp. 1597–1607, 2019.
[8]      Zou, H., Li, L., Cai, S., "Effect of magnesium-rich phase on oxidation properties of atomized aluminum–magnesium powders", Journal of Propulsion and Power, Vol. 32, pp. 32–37, 2016.
[9]      Huang, H.-T., Zou, M.-S., Guo, X.-Y., Yang, R.-J., Li, Y.-K., Jiang, E.-Z., Li, Z.-S., "Study of different Al/Mg powders in hydroreactive fuel propellant used for water ramjet", Journal of Energetic Materials, Vol. 32, pp. S83–S93, 2014.
[10]    Bergthorson, J.M., Goroshin, S., Soo, M.J., Julien, P., Palecka, J., Frost, D.L., Jarvis, D.J., "Direct combustion of recyclable metal fuels for zero-carbon heat and power", Applied Energy, Vol. 160, pp. 368–382, 2015.
[11]    Garra, P., Leyssens, G., Allgaier, O., Schönnenbeck, C., Tschamber, V., Brilhac, J.-F., Tahtouh, T., Guézet, O., et al., "Magnesium/air combustion at pilot scale and subsequent PM and NO x emissions", Applied Energy, Vol. 189, pp. 578–587, 2017.
[12]    Friedman, R., Maček, A., "Ignition and combustion of aluminium particles in hot ambient gases", Combustion and Flame, Vol. 6, pp. 9–19, 1962.
[13]    Wang, S., Corcoran, A.L., Dreizin, E.L., "Combustion of magnesium powders in products of an air/acetylene flame", Combustion and Flame, Vol. 162, pp. 1316–1325, 2015.
[14]    Julien, P., Whiteley, S., Soo, M., Goroshin, S., Frost, D.L., Bergthorson, J.M., "Flame speed measurements in aluminum suspensions using a counterflow burner", Proceedings of the Combustion Institute, Vol. 36, pp. 2291–2298, 2017.
[15]    Lomba, R., Bernard, S., Gillard, P., Mounaïm-Rousselle, C., Halter, F., Chauveau, C., Tahtouh, T., Guézet, O., "Comparison of combustion characteristics of magnesium and aluminum powders", Combustion Science and Technology, Vol. 188, pp. 1857–1877, 2016.
[16]    Gol’dshleger, U.I., Amosov, S.D., "Combustion modes and mechanisms of high-temperature oxidation of magnesium in oxygen", Combustion, Explosion, and Shock Waves, Vol. 40, pp. 275–284, 2004.
[17]    Markstein, G.H., "Magnesium-oxygen dilute diffusion flame", Symposium (International) on Combustion, Vol. 9, pp. 137–147, 1963.
[18]    Scudino, S., Sakaliyska, M., Surreddi, K.B., Eckert, J., "Mechanical alloying and milling of Al–Mg alloys", Journal of Alloys and Compounds, Vol. 483, pp. 2–7, 2009.
[19]    Nie, H., Schoenitz, M., Dreizin, E.L., "Oxidation of differently prepared Al-Mg alloy powders in oxygen", Journal of Alloys and Compounds, Vol. 685, pp. 402–410, 2016.
[20]    Lumley, R.N., Sercombe, T.B., Schaffer, G.M., "Surface oxide and the role of magnesium during the sintering of aluminum", Metallurgical and Materials Transactions A, Vol. 30, pp. 457–463, 1999.
[21]    Schoenitz, M., Dreizin, E.L., "Oxidation processes and phase changes in metastable Al-Mg alloys", Journal of Propulsion and Power, Vol. 20, pp. 1064–1068, 2004.
[22]    Khawam, A., Flanagan, D.R., "Basics and Applications of Solid-State Kinetics: A Pharmaceutical Perspective", Journal of Pharmaceutical Sciences, Vol. 95, pp. 472–498, 2006.
[23]    Vyazovkin, S., Sbirrazzuoli, N., "Isoconversional kinetic analysis of thermally stimulated processes in polymers", Macromolecular Rapid Communications, Vol. 27, pp. 1515–1532, 2006.
[24]    Vyazovkin, S., Chrissafis, K., Di Lorenzo, M.L., Koga, N., Pijolat, M., Roduit, B., Sbirrazzuoli, N., Suñol, J.J., "ICTAC kinetics committee recommendations for collecting experimental thermal analysis data for kinetic computations", Thermochimica Acta, Vol. 590, pp. 1–23, 2014.
[25]    Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C., Sbirrazzuoli, N., "ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data", Thermochimica Acta, Vol. 520, pp. 1–19, 2011.
[26]    Friedman, H.L., "Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic", Journal of Polymer Science Part C: Polymer Symposia, Vol. 6, pp. 183–195, 2007.
[27]    Starink, M.., "The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods", Thermochimica Acta, Vol. 404, pp. 163–176, 2003.
[28]    Jaafari, Z., Seifoddini, A., Hasani, S., Rezaei-Shahreza, P., "Kinetic analysis of crystallization process in [(Fe0.9Ni0.1)77Mo5P9C7.5B1.5]100−xCux (x = 0.1 at.%) BMG", Journal of Thermal Analysis and Calorimetry, Vol. 134, pp. 1565–1574, 2018.
[29]    Rezaei-Shahreza, P., Seifoddini, A., Hasani, S., "Non-isothermal kinetic analysis of nano-crystallization process in (Fe41Co7Cr15Mo14Y2C15)94B6 amorphous alloy", Thermochimica Acta, Vol. 652, pp. 119–125, 2017.
[30]    Ansariniya, M., Seifoddini, A., Hasani, S., "(Fe0.9Ni0.1)77Mo5P9C7.5B1.5 bulk metallic glass matrix composite produced by partial crystallization: The non-isothermal kinetic analysis", Journal of Alloys and Compounds, Vol. 763, pp. 606–612, 2018.
[31]    Rajabi, A., Mashreghi, A.R., Hasani, S., "Non-isothermal kinetic analysis of high temperature oxidation of Ti–6Al–4V alloy", Journal of Alloys and Compounds, Vol. 815, pp. 151948, 2020.
[32]    Khawam, A., Flanagan, D.R., "Solid-State Kinetic Models: Basics and Mathematical Fundamentals", The Journal of Physical Chemistry B, Vol. 110, pp. 17315–17328, 2006.
[33]    Málek, J., "The kinetic analysis of non-isothermal data", Thermochimica Acta, Vol. 200, pp. 257–269, 1992.
[34]    Budrugeac, P., Criado, J.M., Gotor, F.J., Malek, J., Pérez-Maqueda, L.A., Segal, E., "On the evaluation of the nonisothermal kinetic parameters of (GeS 2 ) 0.3 (Sb 2 S 3 ) 0.7 crystallization using the IKP method", International Journal of Chemical Kinetics, Vol. 36, pp. 309–315, 2004.
[35]    Hasani, S., Rezaei-Shahreza, P., Seifoddini, A., "The effect of Cu minor addition on the non-isothermal kinetic of nano-crystallites formation in Fe41Co7Cr15Mo14Y2C15B6 BMG", Journal of Thermal Analysis and Calorimetry, 2020.
[36]    Joraid, A.A., Abu-Sehly, A.A., El-Oyoun, M.A., Alamri, S.N., "Nonisothermal crystallization kinetics of amorphous Te51.3As45.7Cu3", Thermochimica Acta, Vol. 470, pp. 98–104, 2008.
[37]    Lu, X., Li, H., Xiao, P., Wu, R., Li, D., "The kinetic analysis of the non-isothermal crystallization process of (Zr46Cu42Al7Y5)95Be5 metallic glass", Thermochimica Acta, Vol. 570, pp. 27–32, 2013.
[38]    Janković, B., Adnađević, B., Jovanović, J., "Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel: Thermogravimetric analysis", Thermochimica Acta, Vol. 452, pp. 106–115, 2007.
[39]    Vrandečić, N.S., Erceg, M., Jakić, M., Klarić, I., "Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight", Thermochimica Acta, Vol. 498, pp. 71–80, 2010.
[40]    Chunmiao, Y., Lifu, Y., Chang, L., Gang, L., Shengjun, Z., "Thermal analysis of magnesium reactions with nitrogen/oxygen gas mixtures", Journal of Hazardous Materials, Vol. 260, pp. 707–714, 2013.