سنتز و بررسی خواص جذب فریت کبالت و نانوکامپوزیت فریت کبالت-هیدروکسی آپاتیت

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران.

2 دانشیار، مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف‌آباد، ایران.

چکیده

در این تحقیق، پودر فریت کبالت (CoFe2O4) و کامپوزیت فریت کبالت-هیدروکسی آپاتیت به روش هم رسوبی سه مرحله‌ای سنتز شد. پودرهای سنتز شده با استفاده از روش‌های مشخصه‌‌یابی پراش پرتو ایکس (XRD)، میکروسکوپ الکترونی روبشی گسیل میدانی (FESEM) و طیف سنجی مادون قرمز (FTIR) مشخصه‌یابی شدند. نتایج پراش پرتو ایکس تشکیل فاز هیدروکسی آپاتیت در کنار پیک‌های فریت کبالت را تایید می‌کند. طیف FTIR نشان دهنده تشکیل پیوند‌های فسفاتی در ترکیب بود که تایید کننده تشکیل هیدروکسی آپاتیت در کنار فاز فریت کبالت بود. نتایج آزمایشات جذب رنگ متیلن بلو ذرات نانو کامپوزیتی سنتز شده نشان داد با افزایش pH مقدار جذب رنگ افزایش داشت. همچنین مقادیر بهینه جذب با استفاده از 03/0 گرم از جاذب در غلظت 10 میلی گرم بر لیتر از متیلن بلو و 9=pH در زمان 45 دقیقه در حدود 100 درصد به دست آمد. همچنین در نتایج به دست آمده مشاهده شد که میزان جذب متیلن بلو بر روی کامپوزیت سنتز شده بسیار بالاتر از فریت کبالت بود و نیز نسبت به هیدروکسی آپاتیت خالص در زمان پایین‌تری جذب انجام گرفت.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis and adsorption properties of cobalt ferrite and cobalt ferrite-hydroxyapatite nanocomposite

نویسندگان [English]

  • Hamid Nourbakhsh 1
  • Ali Hassanzadeh-Tabrizi 2
1 MSc student, Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
2 Associate Professor, Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
چکیده [English]

In this study, cobalt ferrite powder (CoFe2O4) and cobalt ferrite-hydroxyapatite composite were synthesized by three-step co-deposition method. The synthesized powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and infrared spectroscopy (FTIR) techniques. The XRD results confirm the formation of the hydroxyapatite phase along the cobalt ferrite peaks. The FTIR spectra showed the formation of phosphate bonds in the compound, confirming the formation of hydroxyapatite along the cobalt ferrite phase. The results of the dye adsorption experiments on the synthesized nanocomposite methylene blue showed that with increasing pH the amount of dye adsorption increased. Also, optimum adsorption values were obtained using 0.03 g of adsorbent at concentration of 10 mg/L of methylene blue and pH=9 at about 100% for 45 min. The results also showed that the adsorption of methylene blue on the synthesized composite was much higher than that of cobalt ferrite and also at lower adsorption time than pure hydroxyapatite.

کلیدواژه‌ها [English]

  • Cobalt ferrite
  • Hydroxyapatite
  • Composite
  • Color Adsorption
  • Methylene blue
[1]           D. Ma, M. Su, J. Qian, Q. Wang, F. Meng, X. Ge, Y. Ye, and C. Song, "Heavy metal removal from sewage sludge under citric acid and electroosmotic leaching processes," Sep. Purif. Technol., vol. 242, p. 116822, 2020/07/01/ 2020.

[2]           Z. Rahman, "An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application," Journal of Hazardous Materials, vol. 396, p. 122682, 2020/09/05/ 2020.

[3]           J. Tang, J. He, H. Tang, H. Wang, W. Sima, C. Liang, and Z. Qiu, "Heavy metal removal effectiveness, flow direction and speciation variations in the sludge during the biosurfactant-enhanced electrokinetic remediation," Sep. Purif. Technol., vol. 246, p. 116918, 2020/09/01/ 2020.

[4]           S. Ali, S. A. U. Rehman, H.-Y. Luan, M. U. Farid, and H. Huang, "Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination," Sci. Total Environ., vol. 646, pp. 1126-1139, 2019/01/01/ 2019.

[5]           Y. Tang, M. Zhang, Z. Wu, Z. Chen, C. Liu, Y. Lin, and F. Chen, "Synthesis and photocatalytic activity of p–n junction CeO2/Co3O4 photocatalyst for the removal of various dyes from wastewater," Materials Research Express, vol. 5, no. 4, p. 045045, 2018.

[6]           P. Senthil Kumar, S. J. Varjani, and S. Suganya, "Treatment of dye wastewater using an ultrasonic aided nanoparticle stacked activated carbon: Kinetic and isotherm modelling," Bioresour. Technol., vol. 250, pp. 716-722, 2// 2018.

[7]           S. Hassanzadeh-Tabrizi, R. Pournajaf, A. Moradi-Faradonbeh, and S. Sadeghinejad, "Nanostructured CuAl2O4: Co-precipitation synthesis, optical and photocatalytic properties," Ceramics International, vol. 42, no. 12, pp. 14121-14125, 2016.

[8]           S. A. Hassanzadeh-Tabrizi, "Polyacrylamide synthesis of nanostructured copper aluminate for photocatalytic application," Journal of Advanced Materials and Processing, vol. 5, no. 4, pp. 12-19, 2018.

[9]           W. Wei, L. Yang, W. H. Zhong, S. Y. Li, J. Cui, and Z. G. Wei, "Fast removal of methylene blue from aqueous solution by adsorption onto poorly crystalline hydroxyapatite nanoparticles," Digest Journal of Nanomaterials and Biostructures, vol. 10, no. 4, pp. 1343- 1363, 2015.

[10]         G. Tomar, A. Thareja, and S. Sarkar, "Enhanced fluoride removal by hydroxyapatite-modified activated alumina," International Journal of Environmental Science and Technology, journal article vol. 12, no. 9, pp. 2809-2818, 2015.

[11]         I. Smičiklas, A. Onjia, S. Raičević, Đ. Janaćković, and M. Mitrić, "Factors influencing the removal of divalent cations by hydroxyapatite," Journal of Hazardous Materials, vol. 152, no. 2, pp. 876-884, 4/1/ 2008.

[12]         S. Hokkanen, A. Bhatnagar, E. Repo, S. Lou, and M. Sillanpää, "Calcium hydroxyapatite microfibrillated cellulose composite as a potential adsorbent for the removal of Cr(VI) from aqueous solution," Chemical Engineering Journal, vol. 283, pp. 445-452, 2016/01/01/ 2016.

[13]         K. Lin, J. Pan, Y. Chen, R. Cheng, and X. Xu, "Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders," Journal of Hazardous Materials, vol. 161, no. 1, pp. 231-240, 1/15/ 2009.

[14]         M. Ibrahim, M. Labaki, J.-M. Giraudon, and J.-F. Lamonier, "Hydroxyapatite, a multifunctional material for air, water and soil pollution control: A review," Journal of Hazardous Materials, vol. 383, p. 121139, 2020/02/05/ 2020.

[15]         G. Ghanizadeh and G. Asgari, "Removal of Methylene Blue Dye from Synthetic Wastewater with Bone Char," (in eng %@ 2008-2029 %[ 2009), Iranian Journal of Health and Environment, Research vol. 2, no. 2, pp. 104-113, 2009.

[16]         H. Aghaei, A. A. Nourbakhsh, S. Karbasi, R. JavadKalbasi, M. Rafienia, N. Nourbakhsh, S. Bonakdar, and K. J. D. Mackenzie, "Investigation on bioactivity and cytotoxicity of mesoporous nano-composite MCM-48/hydroxyapatite for ibuprofen drug delivery," Ceram. Int., vol. 40, no. 5, pp. 7355-7362, 6// 2014.

[17]         F. Foroughi, S. Hassanzadeh-Tabrizi, and A. Bigham, "In situ microemulsion synthesis of hydroxyapatite-MgFe2O4 nanocomposite as a magnetic drug delivery system," Materials Science and Engineering: C, vol. 68, pp. 774-779, 2016.

[18]         F. Foroughi, S. A. Hassanzadeh-Tabrizi, and J. Amighian, "Microemulsion synthesis and magnetic properties of hydroxyapatite-encapsulated nano CoFe2O4," J. Magn. Magn. Mater., vol. 382, pp. 182-187, 2015/05/15/ 2015.

[19]         F. Foroughi, S. A. Hassanzadeh-Tabrizi, and A. Bigham, "In situ microemulsion synthesis of hydroxyapatite-MgFe2O4 nanocomposite as a magnetic drug delivery system," Mater Sci Eng C Mater Biol Appl, vol. 68, pp. 774-779, Nov 1 2016.

[20]         F. Foroughi, S. A. Hassanzadeh-Tabrizi, J. Amighian, and A. Saffar-Teluri, "A designed magnetic CoFe2O4–hydroxyapatite core–shell nanocomposite for Zn(II) removal with high efficiency," Ceram. Int., vol. 41, no. 5, Part B, pp. 6844-6850, 2015/06/01/ 2015.

[21]         F. Foroughi, S. A. Hassanzadeh-Tabrizi, and J. Amighian, "Microemulsion synthesis and magnetic properties of hydroxyapatite-encapsulated nano CoFe2O4," J. Magn. Magn. Mater., vol. 382, no. Supplement C, pp. 182-187, 2015/05/15/ 2015.

[22]         H. Khandelwal and S. Prakash, "Synthesis and Characterization of Hydroxyapatite Powder by Eggshell," Journal of Minerals and Materials Characterization and Engineering, vol. 4, no. 2, pp. 119-126, 2016.

[23]         G. Gergely, F. Wéber, I. Lukács, A. L. Tóth, Z. E. Horváth, J. Mihály, and C. Balázsi, "Preparation and characterization of hydroxyapatite from eggshell," Ceram. Int., vol. 36, no. 2, pp. 803-806, 3// 2010.

[24]         B. Chaudhuri, B. Mondal, D. K. Modak, K. Pramanik, and B. K. Chaudhuri, "Preparation and characterization of nanocrystalline hydroxyapatite from egg shell and K2HPO4 solution," Materials Letters, vol. 97, pp. 148-150, 4/15/ 2013.

[25]         H. Mohammadi, M. R. Nilforoushan, and M. Tayebi, "Effect of nanosilica addition on bioactivity and in vivo properties of calcium aluminate cement," Ceramics International, vol. 46, no. 4, pp. 4335-4343, 2020/03/01/ 2020.

[26]         P. Kamalanathan, S. Ramesh, L. T. Bang, A. Niakan, C. Y. Tan, J. Purbolaksono, H. Chandran, and W. D. Teng, "Synthesis and sintering of hydroxyapatite derived from eggshells as a calcium precursor," Ceram. Int., vol. 40, no. 10, Part B, pp. 16349-16359, 12// 2014.

[27]         K. V. Chandekar and K. M. Kant, "Relaxation phenomenon and relaxivity of cetrimonium bromide (CTAB) coated CoFe2O4 nanoplatelets," Physica B: Condensed Matter, vol. 545, pp. 536-548, 2018/09/15/ 2018.

[28]         M. Auta and B. H. Hameed, "Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue," Chemical Engineering Journal, vol. 237, no. 0, pp. 352-361, 2/1/ 2014.

[29]         A. Nezam, A. Saffar-Teluri, and S. A. Hassanzadeh-Tabrizi, "The high efficiency of Al2O3–SiO2–CuO nanocomposites as an adsorbent: synthesis and dye removal efficiency," Res. Chem. Intermed., journal article vol. 42, no. 5, pp. 4999-5011, 2016.