شبیه‌سازی المان محدود پدیده تبلور مجدد دینامیکی و بررسی عوامل مؤثر بر آن در جوشکاری اصطکاکی اغتشاشی آلیاژ آلومینیوم AA-2024

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، دانشکده مهندسی و علم مواد، دانشگاه صنعتی شریف، تهران، ایران.

2 استادیار، دانشکده مهندسی شیمی، دانشگاه آزاد اسلامی اراک، اراک، ایران.

3 کارشناس ارشد، دانشکده مکانیک گرایش تبدیل انرژی، دانشگاه آزاد اسلامی اراک، اراک، ایران.

چکیده

در پژوهش حاضر تغییرات اندازه دانه و نحوه توزیع دانه‌ها و اثر عوامل مختلف از جمله ضریب اصطکاک، سرعت چرخشی ابزار، سرعت خطی ابزار، نرخ سرد شدن، هندسه ابزار و عمق نفوذ ابزار بر میزان تغییرات دما و اندازه دانه در حین فرآیند جوشکاری اصطکاکی اغتشاشی ورق آلیاژی آلومینیوم 2024-AA با ضخامت 8/7 میلیمتر بررسی شده است. به منظور شبیه‌سازی مدل اجزای محدود جوشکاری اصطکاکی اغتشاشی از نرم‌افزار D3 DEFORM استفاده شده است. ابزار به‌صورت جسم صلب و ورق به ‌صورت یک ماده پلاستیک قابل تغییرفرم در نظر گرفته شده است. ضریب اصطکاک بین ورق و تمامی سطوح که با ورق در تماس هستند برابر فرض شده‌اند. به‌منظور صحه‌سنجی، مقایسه‌ای بین داده‌های شبیه‌سازی با نتایج تجربی انجام شده است. اثر عوامل مؤثر بر دمای حاصل از جوشکاری و میزان تغییرات اندازه دانه در مقطع عرضی خط جوش مورد بحث و بررسی قرار گرفته‌اند. از بین متغیرهای مورد مطالعه، افزایش نرخ سردکنندگی و سرعت خطی ابزار موجب کاهش دما و اندازه دانه شده و با افزایش سایر متغیرها، دما و اندازه دانه افزایش می‌یابند. نتایج نشان می‌دهند که با روش ارائه شده در این مقاله می‌توان پیش‌بینی دقیقی از اثر تغییرات متغیر موثر بر دما و اندازه دانه بدست آورد. در ادامه از این نتایج می‌توان برای تعیین شرایط مطلوب انجام فرآیند جوشکاری اصطکاکی اغتشاشی استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Finite element simulation of dynamic recrystallization phenomenon and evaluation of effective factors in friction stir welding in AA-2024 aluminum alloy

نویسندگان [English]

  • Sirous Rizehvandy 1
  • Mahmoud Salimi 2
  • Ali Akbar Nasiri 3
1 M.Sc., School of Metallurgy and Materials Engineering, Sharif University of Technology, Tehran, Iran.
2 Assistant Professor, Chemical Engineering Department , Islamic Azad University Arak Branch, Arak, Iran.
3 M.Sc., Department of Mechanical Engineering, Islamic Azad University Arak Branch, Arak, Iran.
چکیده [English]

In this research, grain size variation and grain distribution and the effect of different factors such as friction, tool rotational speed, linear velocity of the tool, cooling rate, tool geometry and tool penetration depth on the temperature change and grain size during the friction stir welding process of the aluminum alloy Al-2024 sheet with a thickness of 7.8 mm has been investigated. In order to simulate the model of finite element friction stir welding, the Deform 3D software has been used. The tool is a rigid body and a sheet is considered as a formable plastic material. In order to validate, a comparison between simulation data and experimental results was performed. The effect of effective factors on the temperature of the welding and the amount of grain size variation in the cross section of the weld line have been discussed. Among the variables studied, increasing the cooling rate and the linear velocity of the tool reduce the temperature and grain size, and increase the temperature and grain size with increasing other variables. The results show that with the method presented in this paper, precise prediction of the effect of variation of the variables affecting temperature and grain size can be obtained. In the following, these results can be used to determine the optimum conditions for the friction stir welding process

کلیدواژه‌ها [English]

  • Friction stir welding
  • Dynamic recrystallization phenomenon
  • finite element method
  • Grain size variation
  • Al-2024 alloy
[1]     A Chandrashekar, Ajay Kumar BS, Reddappa HN, “Friction Stir Welding Tool Materialand Geometry”, Akgec International Journal Of Technology, Vol. 6, No.1,pp.16-20, 2003.

[2]     H. Wu, Y.-C. Chen, D. Strong, P. Prangnell, Stationary shoulder FSW for joining high strength aluminum alloys, Journal of Materials Processing Technology, Vol. 221, pp. 187-196, 2015.

[3]     M. Assidi, L. Fourment, S. Guerdoux, T. Nelson, Friction model for friction stir welding process simulation: Calibrations from welding experiments, International Journal of Machine Tools and Manufacture, Vol. 50, No. 2, pp. 143-155, 2010.

[4]     A. Hasan, C. Bennett, P. Shipway, A numerical comparison of the flow behaviour in Friction Stir Welding (FSW) using unworn and worn tool geometries, Materials & Design, Vol. 87, pp. 1037-1046, 2015.

[5]     M. M. Shtrikman, A. P. Kornevich, A. V. Pinskiy, “Friction stir welding of ribbed panels of aircraft airframes” Welding International, Vol. 32, No. 3, 2018.

[6]     G. Singh, A. S. Kang, K. Singh, J. Singh, Experimental comparison of friction stir welding process and TIG welding process for 6082-T6 Aluminium alloy, Materials Today Proceedings, Vol. 4, No. 2, pp. 3590-3600, 2017.

[7]     N. Jalili, H. B. Tabrizi, M. M. Hosseini, Experimental and numerical study of simultaneous cooling with CO 2 gas during friction stir welding of Al-5052, Journal of Materials Processing Technology, Vol. 237, pp. 243-253, 2016.

 

[8]     J. Teimurnezhad, H. Pashazadeh, A. Masumi, Effect of shoulder plunge depth on the weld morphology, macrograph and microstructure of copper FSW joints, Journal of Manufacturing Processes, Vol. 22, pp. 254-259, 2016.

 

[9]     K. Gök, and M. Aydin, Investigations of friction stir welding process using finite element method. The International Journal of Advanced Manufacturing Technology, Vol. 68, No. 4, pp. 775-780, 2013.

[10]   Z. Gao, J. Niu, F. Krumphals, N. Enzinger, S. Mitsche, C. Sommitsch, FE modelling of microstructure evolution during friction stir spot welding in AA6082-T6, Welding in the World, Vol. 57, No. 6, pp. 895-902, 2013.

[11]   G.E Dieter, and D.J. Bacon, Mechanical metallurgy. McGraw-hill New York, pp. 475-523, 1986.

[12]   R.W, Hertzberg, Deformation and fracture mechanics of engineering materials. New York, pp. 462-552, 1989.

[13]   M.S Rao, B.R. Kumar, and M.M. Hussain, Experimental study on the effect of welding parameters and tool pin profiles on the IS: 65032 aluminum alloy FSW joints. Materials Today Proceedings.Vol. 57, pp. 1394-1404,  2017.

[14]   G. D’Urso, et al., The influence of process parameters on mechanical properties and corrosion behaviour of friction stir welded aluminum joints. Procedia Engineering,Vol. 2, pp. 591-596, 2017.

[15]   Q. Zheng et al, Effect of plunge depth on microstructure and mechanical properties of FSW lap joint between aluminum alloy and nickel-base alloy. Journal of Alloys and Compounds.Vol. 695, pp. 952-961, 2017.

[16]   A. Khalkhali, M. Saranjam, Finite element simulation of microstructure evolution during friction stir welding of automotive aluminum parts, International Journal of Automotive Engineering, Vol. 5, No 1,pp.932-938, 2015.

[17]   L. Donati, A. Segatori, M. El Mehtedi, L. Tomesani, Grain evolution analysis and experimental validation in the extrusion of 6XXX alloys by use of a lagrangian FE code, International Journal of Plasticity,  pp. 70-81, 2013.

[18]   J.R Davis,  ASM specialty handbook: heat-resistant materials,  Asm International,  1997.

[19]   J. G. Kaufman, Introduction to aluminum alloys and tempers, ASM international, 2000.

[20]   G. Buffa, J. Hua, R. Shivpuri, L. Fratini, Design of the friction stir welding tool using the continuum based FEM model, Materials Science and Engineering: A, Vol. 419, No. 1, pp. 381-388, 2006.

[21]   G. Buffa, J. Hua, R. Shivpuri, L. FratiniA continuum based fem model for friction stir welding—model development, Materials Science and Engineering: A, Vol. 419, No. 1, pp. 389-396, 2006.

[22]   S. DEFORM-3D™ V10.2 User's manual, Columbus, Ohio, USA.2010.

[23]   N. Sibalic, M. Vukcevic, M. Janjic, S. Savicevic, A study on friction stir welding of AlSi1MgMn aluminium alloy plates/Studija zavarivanja trenjem lima od aluminijske legure AlSi1MgMn, Tehnicki Vjesnik-Technical Gazette, Vol. 23, No. 3, pp. 653-661, 2016.

[24]   R. A. Behnagh, M. Besharati Givi, M. Akbari, Mechanical properties, corrosion resistance, and microstructural changes during friction stir processing of 5083 aluminum rolled plates, Materials and manufacturing processes, Vol. 27, No. 6, pp. 636-640, 2012.

[25]   L. Fratini, G. Buffa, and R. Shivpuri, Mechanical and metallurgical effects of in process cooling during friction stir welding of AA7075-T6 butt joints. Acta Materialia, Vol. 56, No 6, pp. 2056-2067, 2010.

[26]   P. Asadi, M. Akbari, H. Karimi-Nemch, Simulation of friction stir welding and processing, Advances in friction stir welding and processing. Woodhead Publishing Limited, Elsevier, pp. 499-542, 2014.

[27]   L. Fratini, F. Micari, G. Buffa, V. Ruisi, A new fixture for FSW processes of titanium alloys, CIRP Annals-Manufacturing Technology, Vol. 59, No. 1, pp. 271-274, 2010.