بررسی رفتار جدایش روی از محلول حاوی منیزیم حاصل از شستشوی فیلترکیک واحد های فروشویی ماده معدنی روی به روش استخراج حلالی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه علم و صنعت ایران, دانشکده مهندسی مواد و متالورژی

2 دانشکده مهندسی مواد ومتالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

3 دانشگاه زنجان، دانشکده مهندسی، گروه مهندسی مواد

چکیده

فرآیند استخراج حلالی فلزات از محلولهای آبی حاوی ناخالصی ها همواره مورد توجه محققان مختلفی بوده است. در تحقیق حاضر جدایش روی از محلول‎های حاصل از شستشوی فیلترکیک‌ واحدهای فروشویی ماده معدنی روی در حضور ناخالصی منیزیم توسط استخراج‌کننده دی 2- اتیل هگزیل فسفریک اسید (D2EHPA) رقیق‌شده در کروسین موردبررسی قرار گرفت. آزمایش‌های متعددی به‌منظور بررسی اثر پارامترهای اصلی بر جدایش وبازدهی استخراج روی از محلول سولفاتی روی طراحی وانجام گرفت. تاثیر پارامترهای مختلف بر فرآیند استخراج شامل pH، غلظتD2EHPA، دمای واکنش و نسبت فاز آلی به آبی مورد ارزیابی واقع شد. بر اساس نتایج به‌دست‌آمده در شرایط بهینه 3-5/2=pH، 20درصدحجمی= [D2EHPA] و در دمای40 درجه سانتی‌گراد، درصد استخراج یون‌های روی و منیزیم به ترتیب برابر 95درصد و 10درصد بوده درحالی که∆pH0.5(Zn-Mg) در شرایط20 درصد حجمی D2EHPA بیش از1/5 به دست آمده است. همچنین در نسبت فاز آبی به آلی 1:1A/O= فاکتور جدایش روی از ناخالصی منیزیم در شرایط بهینه معادل 5010 بدست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation on the Zn separation behavior from solution contain Mg from a leaching solution of zinc filter cake by Solvent Extraction

نویسندگان [English]

  • Mohammad Reza Abutalebi 1
  • Majid Saneie 2
  • Javad Moghaddam 3
1 School of Metallurgy & Materials Engineering, Iran University of Science and Technology, Tehran, Iran
2 School of Metallurgy & Materials Engineering, Iran University of Science and Technology, Tehran, Iran
3 Department of Materials Science, Faculty of Engineering, University of Zanjan, Iran
چکیده [English]

The solvent extraction process of metals from aqueous solution containing impurities has been the subjects of numerous studies. In the present work, separation of zinc from the solution of filter-cake leaching unit in the presence of Mg impurity was investigated using the D2-ethyl hexyl phosphoric acid (D2EHPA) extractant diluted in kerosene. Different experiments were carried out to evaluate the effects of main parameters on recovery and separation of zinc from the sulphate solution. Parameters affecting the extraction process such as pH, D2EHPA concentration, temperature, and organic to aqueous ratio were evaluated. Based on the results obtained at optimal conditions, the pH =2.5-3, [D2EHPA]=20%(vol/vol) and at 40 ° C, the extraction efficiency of zinc and magnesium ions were 95% and 10%, respectively, while the value of ΔpH0.5(Zn-Mg) factor was obtained more than 5.1 under the condition of [D2EHPA]= 20%(v/v). Also for the aqueous to the organic phase ratio (A/O) of 1: 1, an optimum zinc separation factor of 5010 was calculated.

کلیدواژه‌ها [English]

  • Zinc Solvent Extraction
  • D2EHPA
  • Zinc Filter Cake
  • Magnesium
[1]        Cole PM, Sole KC. Zinc solvent extraction in the process industries. Mineral Processing and Extractive Metallurgy Review. 2003 Jan 1;24(2):91-137.
[2]        Deep A, de Carvalho JM. Review on the recent developments in the solvent extraction of zinc. Solvent Extraction and Ion Exchange. 2008 Jul 1;26(4):375-404.
[3]        Hudson MJ. An introduction to some aspects of solvent extraction chemistry in hydrometallurgy. Hydrometallurgy. 1982 Nov 1;9(2):149-68.
[4]        Asadi T, Azizi A, Lee JC, Jahani M. Solvent extraction of zinc from sulphate leaching solution of a sulphide-oxide sample using D2EHPA and Cyanex 272. Journal of Dispersion Science and Technology. 2018 Sep 2;39(9):1328-34.
[5]        Ritcey GM. Solvent extraction in hydrometallurgy: present and future. Tsinghua Science and Technology. 2006 Apr;11(2):137-52.
[6]        Reddy BR, Priya DN. Process development for the separation of copper (II), nickel (II) and zinc (II) from sulphate solutions by solvent extraction using LIX 84 I. Separation and Purification Technology. 2005 Oct 1;45(2):163-7.
[7]        Baba AA, Adekola FA. Beneficiation of a Nigerian sphalerite mineral: solvent extraction of zinc by Cyanex® 272 in hydrochloric acid. Hydrometallurgy. 2011 Oct 1;109(3-4):187-93.
[8]        Ding K, Liu Y, Tang J, Zhou Y, Hu J, Lin X, Wu W. Direct enrichment of zinc (II) from and into ammoniacal media with commercialLIX84I. Separation and Purification Technology. 2017 Oct 2;186:264-71.
[9]        Jha MK, Kumar V, Singh RJ. Review of hydrometallurgical recovery of zinc from industrial wastes. Resources, conservation and recycling. 2001 Aug 1;33(1):1-22.
[10]      da SilveiraLeite D, Carvalho PL, de Lemos LR, Mageste AB, Rodrigues GD. Hydrometallurgical recovery of Zn (II) and Mn (II) from alkaline batteries waste employing aqueous two-phase system. Separation and Purification Technology. 2019 Feb 8;210:327-34.
[11]      Tanong K, Tran LH, Mercier G, Blais JF. Recovery of Zn (II), Mn (II), Cd (II) and Ni (II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods. Journal of cleaner production. 2017 Apr 1;148:233-44.         
[12]      Jha MK, Gupta D, Choubey PK, Kumar V, Jeong J, Lee JC. Solvent extraction of copper, zinc, cadmium and nickel from sulfate solution in mixer settler unit (MSU). Separation and Purification Technology. 2014 Feb 10;122:119-27.
[13]      Ocio A, Elizalde MP. Zinc (II) Extraction from Phosphoric Media by bis (2, 4, 4‐Trimethylpentyl) dithiophosphinic Acid (CYANEX 301). Solvent extraction and ion exchange. 2003 Jan 5;21(2):259-71.
[14]      V. F. Ibiapina, J. C. Afonso, R. S. da Silva, C. A. Vianna, and J. L. Mantovano, “SEPARATION OF ZINC FROM MANGANESE BY SOLVENT EXTRACTION FROM ACIDIC LEACHATES OF SPENT ZINC-MnO2 DRY CELLS USING NEUTRAL ORGANOPHOSPHORUS EXTRACTANTS,” Quim. Nova, vol. 41, no. 7, pp. 770–777, 2018.
[15]      Aghazadeh S, Gharabaghi M, Shafaei Z. Thermodynamical and catalytic aspects of zinc separation from aqueous solution. Chinese journal of chemical engineering. 2018 Dec 1;26(12):2455-60.
[16]      Anari Z, Katoozi E, Sengupta A. Establishing correlation between effective diffusivity coefficient and the mass transfer for Zn2+ column extraction by D2EHPA: An experimental and theoretical investigation. Journal of environmental chemical engineering. 2018 Oct 1;6(5):6322-7.
[17]      Fukubayashi H. The effect of impurities and additives on the electrowinning of zinc.1972
[18]      Ault AR, Frazer EJ. Effects of certain impurities on zinc electrowinning in high-purity synthetic solutions. Journal of applied electrochemistry. 1988 Jul 1;18(4):583-9.
[19]      غ. خ. اولیازاده منوچهر, بلورفروش محمدرضا, “بهینه سازی و تعیین عوامل مؤثر در لیچینگ کانه سیلیکاته روی در حضور عناصر آهن و منگنز,” کنفرانس مهندسی معدن ایران، دانشگاه تربیت مدرس, vol. 1, 1383
[20]      Mureşan L, Maurin G, Oniciu L, Gaga D. Influence of metallic impurities on zinc electrowinning from sulphate electrolyte. Hydrometallurgy. 1996 Nov 1;43(1-3):345-54.
[21]      Yu XH, Gang XI, Li RX, Li YG, Ying LU. Behavior of arsenic in zinc electrowinning. Transactions of Nonferrous Metals Society of China. 2010 May 1;20:s50-4.
[22]      Xu H, Wei C, Li C, Fan G, Deng Z, Li M, Li X. Sulfuric acid leaching of zinc silicate ore under pressure. Hydrometallurgy. 2010 Dec 1;105(1-2):186-90.
[23]      Frenay J. Leaching of oxidized zinc ores in various media. Hydrometallurgy. 1985 Dec 1;15(2):243-53.
[24]      Tsakiridis PE, Agatzini SL. Simultaneous solvent extraction of cobalt and nickel in the presence of manganese and magnesium from sulfate solutions by Cyanex 301. Hydrometallurgy. 2004 Mar 1;72(3-4):269-78.
[25]      Lins VF, Castro MM, Araújo CR, Oliveira DB. Effect of nickel and magnesium on zinc electrowinning using sulfate solutions. Brazilian Journal of Chemical Engineering. 2011 Sep;28(3):475-82.
[26]      MacKinnon DJ, Brannen JM. Effect of manganese, magnesium, sodium and potassium sulphates on zinc electrowinning from synthetic acid sulphate electrolytes. Hydrometallurgy. 1991 Jul 1;27(1):99-111.
[27]      Cheng CY, Zhang W, Pranolo Y. Separation of cobalt and zinc from manganese, magnesium, and calcium using a synergistic solvent extraction system consisting of Versatic 10 and LIX 63. Solvent Extraction and Ion Exchange. 2010 Aug 31;28(5):608-24.
[28]      Qiu Y, Yang L, Huang S, Ji Z, Li Y. The separation and recovery of copper (II), nickel (II), cobalt (II), zinc (II), and cadmium (II) in a sulfate-based solution using a mixture of Versatic 10 acid and Mextral 984H. Chinese journal of chemical engineering. 2017 Jun 1;25(6):760-7.     
[29]      Vahidi E, Rashchi F, Moradkhani D. Recovery of zinc from an industrial zinc leach residue by solvent extraction using D2EHPA. Minerals Engineering. 2009 Jan 1;22(2):204-6.
[30]      Balesini AA, Razavizadeh H, Zakeri A. Solvent Extraction of Zinc from Acidic Solution Obtained from Cold Purification Filter Cake of Angouran Mine Concentrate Using D2EHPA.
[31]      Jafari H, Abdollahi H, Gharabaghi M, Balesini AA. Solvent extraction of zinc from synthetic Zn-Cd-Mn chloride solution using D2EHPA: Optimization and thermodynamic studies. Separation and Purification Technology. 2018 May 31;197:210-9.