مروری بر صنعت منیزیم در ایران- تهدیدها و فرصت‌ها

نوع مقاله: مقاله مروری

نویسندگان

1 دانشکده مهندسی مکانیک، دانشگاه تهران، تهران، ایران

2 مهندسی مکانیک- دانشکده مهندسی مکانیک- دانشگاه تربیت مدرس-تهران-ایران

10.22076/me.2019.96427.1215

چکیده

در دو دهه اخیر تلاش‌های گسترده‌ای به منظور افزایش استفاده از منیزیم و یافتن راه حل‌های مناسب برای مقابله با محدودیت‌های آن صورت گرفته است. در این راستا تولید و تقاضا آلیاژهای منیزیم نیز در بازارهای بین المللی با رشد قابل توجهی همراه بوده است. در ایران نیز توجه به تولید و به کار-گیری این فلز گسترش یافته است. در تحقیق حاضر تلاش شده است در ابتدا روش‌های تولید منیزیم به طور مختصر معرفی و سپس با بررسی ویژگی-های هر روش، مزیت‌های نسبی ایران در تولید منیزیم گردآوری و ارائه شود. علی رغم وجود مزیت‌های مهم از جمله فراوانی مواد اولیه، در دسترس بودن انرژی و نیروی کار ارزان، تولید منیزیم با تهدیدات بالقوه‌ای همراه می‌باشد. در ادامه این مقاله به تهدیدات صنعت تولید منیزیم اولیه مانند موانع تامین مواد اولیه مناسب و سرمایه در گردش در کشور پرداخته شده است. در نهایت ضمن بررسی سوابق تولید، عرضه و تقاضای منیزیم در ایران کاربردهای اصلی متالورژیکی و سازه ای منیزیم در صنایع ایران معرفی شده اند. بررسی‌های فنی و اقتصادی نشان می‌دهد که با توجه به مزایای رقابتی ایران برای تولید و استفاده از این فلز، صنعت منیزیم در کشور با توسعه قابل ملاحظه‌ای همراه خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

A Review of Magnesium Industry in Iran – Opportunities and Threats

نویسندگان [English]

  • Alireza Sadeghi 1
  • Sahel Mohammadi 2
1 School of Mechanical Engineering, University of Tehran, Tehran, Iran
2 Mechanical engineering- Tarbiat modares university-Tehran-Iran
چکیده [English]

In the last two decades, efforts for increasing Magnesium (Mg) applications and finding solutions for overcoming its limitations have increased. At the same time, production and demand for Mg alloys have also increased significantly in the international markets. In response to the international trends, attention to Mg production and its consumption has also grown in Iran. In the present paper different technologies of Mg production has been briefly introduced and local opportunities in Mg production are summarized and elaborated. Despite the existence of important opportunities in local Mg production, including easy access to low cost and clean energy, raw material and workforce, Mg production features high potential important threats. Different threats to local Mg production including limitation in access to appropriate raw material and access to large working capital are further discussed in this paper. At the end, amongst investigating the history of Mg production, supply and demand in Iran, main structural and metallurgical applications of Mg in local industries are described. Technical and financial feasibility studies indicate that Iran has major advantages in production and consumption of Mg and this industrial sector will experience major growth in the future.

کلیدواژه‌ها [English]

  • Mg Production
  • Supply and demand of Mg in Iran
  • Silicothermic reduction
  • Primary metal production
  • Ferrosilicon
1.        Company(IRALCO) IA. شرکت آلومینیوم ایران (ایرالکو) [Internet]. Available from: http://new.iralco.ir/index.aspx?lang=1&sub=0

2.        Liu M, Shih DS, Parish C, Atrens A. The Ignition Temperature of Mg Alloys WE43, AZ31 and AZ91. Corrosion Science [Internet]. 2012;54(1):139–42. Available from: http://dx.doi.org/10.1016/j.corsci.2011.09.004

3.        Gulbransen LB, Lewis JR, Hamilton H. Ignition Temperatures of Magnesium and Magnesium Alloys. Journal of Metals. 1951;523.

4.        Zhu C-G, Wang H-Z, Min L. Ignition Temperature of Magnesium Powder and Pyrotechnic Composition. Journal of Energetic Materials [Internet]. 2014;32(3):219–26. Available from: https://doi.org/10.1080/07370652.2013.812162

5.        Czerwinski F. Overcoming barriers of magnesium ignition and flammability. Advanced Materials and Processes. 2014;172(5):28–31.

6.        Sadeghi A, Pekguleryuz M. Recrystallization and texture evolution of Mg-3%Al-1%Zn-(0.4-0.8)%Sr alloys during extrusion. Materials Science and Engineering A [Internet]. 2011;528(3):1678–85. Available from: http://dx.doi.org/10.1016/j.msea.2010.10.096

7.        محمدی، س, صادقی م, صادقی ع. مطالعه ای بر جایگاه آلیاژهای منیزیم در صنعت خودرو. In: پنجمین همایش سالانه بین المللی صنعت خودرو ایران. تهران: IAIIC2018; 1396.

8. U.S. Geological Survey, 2019, Mineral commodity summaries 2019: U.S. Geological Survey, 200 p., https://doi.org/10.3133/70202434

9.        Web of Science - Clarivate [Internet]. Available from: https://clarivate.com/products/web-of-science/?utm_source=adwords&utm_medium=paid&utm_campaign=SAR_Products_PPC_SAR_2018&gclid=EAIaIQobChMI8o7WmKqy3QIV1UkYCh2BRQifEAAYASAAEgKkRPD_BwE

10.      Stalmann A, Sebastian W, Friedrich H, Schumann S, Dröder K. Properties and processing of magnesium wrought products for automotive applications. Advanced Engineering Materials. 2001;3(12):969–74.

11.      Andure M.W., Jirapure S.C. DLP. Advance Automobile Material for Light Weight Future – A Review. International Conference on Benchmarks in Engineering Science and Technology ICBEST 2012 Proceedings published by International Journal of Computer Applications® (IJCA). 2012;15–22.

12.      E RZZ, Wiel JW Van Der. Future of Automotive Design & Materials Trends and Developments in Design and Materials. 2008;

13.      Gray Kards. Magnesium Car Parts: Cost Factors (Part 2) | Engineering360 [Internet]. IEEE Globalspace. 2017. Available from: https://insights.globalspec.com/article/7250/magnesium-car-parts-cost-factors-part-2

14.      Manuel M V., Singh A, Alderman M, Neelameggham NR, 2015. The Application of Magnesium alloys in Aircraft Interiors – Changing the Rules, TMS (The Minerals, Metals & Materials Society).

15.      GM Greener Vehicles. GM Pioneers Use of Lightweight Magnesium Sheet Metal [Internet]. Available from: https://3blmedia.com/News/GM-Pioneers-Use-Lightweight-Magnesium-Sheet-Metal

16.      Ghali E. Corrosion resistance of Aluminium and Magnesium alloys, 2010. A JOHN WILEY & SONS;

17.      شیبانی س, عطایی ا, حشمتی منش س, خیاطی غ. بررسی تاثیر پارامترهای مهم بر فرآیند تولید منیزیم از دولومیت کلسینه شده با روش احیا سیلیکوترمی تحت خلاء. In: دهمین کنگره سالانه انجمن مهندسین متالورژی ایران [Internet]. انجمن مهندسین متالورژی ایران; 1385. Available from: https://www.civilica.com/Paper-CIMS10-CIMS10_026.html

18.      Sivrikaya O. A study on the physicochemical and thermal characterisation of dolomite and limestone samples for use in ironmaking and steelmaking. Ironmaking & Steelmaking [Internet]. 2017;0(0):1–9. Available from: https://doi.org/10.1080/03019233.2017.1337264

19.      Morsi IM, Ali HH. Start-up Slags for Producing Magnesium from Dolomite Ore in a Magnethermic Reactor. Journal of the Southern African Institute of Mining and Metallurgy. 2013;113(6):511–7.

20.      Mordike F. Magnesium Technology: Metallurgy, Design Data, Applications. 2006.

21.      Wulandari W, Brooks GA, Rhamdhani M a, Monaghan BJ. Magnesium : Current and Alternative Production Routes. Chemeca 2010: Engineering at the Edge; 26-29 September 2010, Hilton Adelaide, South Australia. 2008;347.

22.      John H. Rizley, Nils Høy-Petersen. Encyclopædia Britannica [Internet].  Encyclopædia Britannica, inc. . 2018. Available from: https://www.britannica.com/technology/magnesium-processing

23.      Kipouros GJ, Sadoway DR. The Chemistry and Electrochemistry of Magnesium Production. Elsevier. 1987;6:127–209.

24.      Ehrenberger SI, Schmid SA, Song S, Friedrich HE. Status and Potentials of Magnesium Production in China: Life Cycle Analysis Focussing on CO2 Emissions. 65th Annual World Magnesium Conference, Warsaw, Poland, May [Internet]. 2008;18–20. Available from: http://elib.dlr.de/54721/01/IMA-Paper_DLR-Ehrenberger-Schmid_Mg-production-in-China_LCA-CO2eq-emissions_080317.pdf

25.      Simandl G, Schultes H, Simandl J, Paradis S. Magnesium - Raw Materials, Metal Extraction and Economics -Global Picture. Proceedings of the Ninth Biennial SGA Meeting, Dublin 2007.

26.      Ramakrishnan S, Koltun P. Global warming impact of the magnesium produced in China using the Pidgeon process. Resources, Conservation and Recycling. 2004;42(1):49–64.

27.      Kramer DA. Magnesium Compounds. Outlook. 2003;2005:1–10. 

28.      River G, Plant M, Huayuan N, Group M, Ding W. The Pidgeon Process in China and its Future. Magnesium Technology. 2000;113–4.

29.      Magnesium Overview | China Magnesium Corporation [Internet]. 2011. Available from: http://www.chinamagnesiumcorporation.com/our-business/magnesium-overview

30.      Schoukens AFS, Abdellatif M, Freeman MJ. Technological breakthrough of the Mintek thermal magnesium process. Journal of the Southern African Institute of Mining and Metallurgy. 2006;106(1):25–9.

31.      Li RB, Zhang SJ, Guo LJ, Wei JJ. Numerical study of magnesium (Mg) production by the Pidgeon process: Impact of heat transfer on Mg reduction process. International Journal of Heat and Mass Transfer. 2013;59(1):328–37.

32.      Cherubini F, Raugei M, Ulgiati S. LCA of magnesium production. Technological overview and worldwide estimation of environmental burdens. Resources, Conservation and Recycling. 2008;52(8–9):1093–100.

33.      Chen L-D. Study on the Reduction Jar Used for Mg Making. FOUNDRY TECHNOLOGY. 2002;23:124–8.

34.      Shahraki BK, Mehrabi B, Dabiri R. Thermal behavior of Zefreh dolomite mine (Centeral Iran). Journal of Mining and Metallurgy, Section B: Metallurgy. 2009;45(1):35–44.

35.      Winand R, Gysel M Van, Fontana A, Segers L. Production of Magnesium by Vacuum Carbothermic reduction of Calcined Dolomite. Mining and Metallurgy. 2000;

36.      GAO F, NIE Z ren, WANG Z hong, GONG X zheng, ZUO T yong. Assessing environmental impact of magnesium production using Pidgeon process in China. Transactions of Nonferrous Metals Society of China (English Edition). 2008;18(3):749–54.

37.      Shahheidari M, Sadeghi A, Sadeghi MH. High Temperature Creep Failure in Magnesium Reduction Retorts. Engineering Failure Analysis [Internet]. 2018;94(May):438–46. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1350630718305521

38.      Mehrabi B, Abdellatif M, Masoudi F. Magnesium production from asian ABE-GARM dolomite in pidgeon-type reactor. Iranian Journal of Materials Science and Engineering. 2011;8(2):18–24.

39.      Mehdi Kashmiri. Iran Joins Top Five Countries Producing Magnesium - Mehr News Agency [Internet]. Mehr Newa Agency. 2014. Available from: https://en.mehrnews.com/news/102877/Iran-joins-top-five-countries-producing-magnesium

40.      بهادری ب. پتانسیل های کشور برای تبدیل شدن به قطب تولید فلز منیزیم در جهان به عنوان یک محصول صادرات محور. مرکز پژوهش ها مجلس شورای اسلامی. 1396;

41.      Aslani S, Hashemi HRSB, Arianpour F. Beneficiation of Iranian Magnesite Ores by Reverse Flotation Process and its Effects on Shaped and Unshaped Refractories Properties. Bulletin of Materials Science. 2010;33(6):697–705.

42.      FinancialTribune. Iran’s Untapped Potential for Magnesium Production | Financial Tribune [Internet]. 2018. Available from: https://financialtribune.com/articles/economy-business-and-markets/80885/iran-s-untapped-potential-for-magnesium-production

43.      MGT Mineral. Iran Dolomite Producer, Supplier and Exporter [Internet]. Available from: http://www.mgtmineral.com/index.php/minerals/dolomite

44      Khaki M. ثروتی هنگفت به نام دولومیت[Internet]. 1394-04-08. Available from: https://www.farsnews.com/news/13940329000643/%D8%AB%D8%B1%D9%88%D8%AA%DB%8C-%D9%87%D9%86%DA%AF%D9%81%D8%AA-%D8%A8%D9%87-%D9%86%D8%A7%D9%85-%D8%AF%D9%88%D9%84%D9%88%D9%85%DB%8C%D8%AA

45.      Dollimore D, Dunn JG, Lee YF, Penrod BM. The Decrepitation of Dolomite and Limestone. Thermochimica Acta. 1994;237(1):125–31.

46.      Kogel JE, Trivedi NC, Barker JM, Krukowski ST. Industrial Minerals and Rocks. Society for Minning, Metallurgy and Exploration, Inc. (SME); 2006. 1003-1009 p.

47.      Karbasiyan M. میزان تولید آلومینیوم ایران 70 درصد افزایش می یابد [Internet].1397-02-06. Available from: http://madan24.com/1397/02/06/میزان-تولید-آلومینیوم-ایران-70-درصد-افزا/

48.      Hu W, Feng N, Wang Y, Wang Z. Magnesium Production by Vacuum Aluminothermic Reduction of a Mixture of Calcined Dolomite and Calcined Magnesite. 2011;121–2.

49.      Salazar K, Kimball SM. Mineral Commodity Summaries 2009. USGS. 2009;

50.      Esan . Magnesium, Metal of the Future [Internet]. 2015.Available from: http://www.esanmagnezyum.com/en/index.html

51.      Das S. Primary Magnesium Production Costs for Automotive Applications. Jom. 2008;60(11):63–9.

52.      Zuliani DJ, Reeson D. Making Magnesium a More Cost and Environmentally Competitive Option. Mg2012: 9th International Conference on Magnesium alloys and their Applications. 2012;21–30.

53.      Simandl GJ, Irvine M, Simandl J. Primary magnesium industry at the crossroads? Light Metal Age. 2007;65(2).

54.      . میزان مصرفی آب در تولید هر تن فولاد ۲۳۰ هزار لیتر آب [Internet]. 1396-06-26. Available from: http://shoaresal.ir/fa/news/80653

55.      شرکت تیوا تجارت ماهان. یازده پیشنهاد مجلس برای توسعه تولید و بازار منیزیوم ایران [Internet]. 1396-12-26. Available from: http://tivamg.com/?p=28666

56.      M. porghasemi. چشم‌انداز روشن اما مشروط منیزیم ایران [Internet]. 02-10-1396. Available from: https://www.smtnews.ir/mine/mineral-industries/15421-

57.      . بازار اینترنتی آهن آلات-تاریخچه [Internet]. 1397-04-12. Available from: https://www.ahannama.ir/blog/view?title=شرکت فولاد مبارکه

58.      Lieberman MB. The Magnesium industry in Transition. Review of Industrial Organization. 2001;19(1):71–9.

59.      درگاه اطلاعات و خدمات صنعت معدن تجارت. بهین یاب [Internet]. Available from: http://www.behinyab.ir/?req=companys&subreq=investment#

60.     Mehrabi B, Abdellatif M, Masoudi F. Evaluation of Zefreh Dolomite(Central Iran) for production of Magnesium via the Pidgeon Process. Mineral Processing & Extractive Metall, 33: 316-326, 2012.

61.      Gao F, Nie Z, Wang Z, Gong X, Zuo T. Life cycle assessment of primary magnesium production using the Pidgeon process in China. International Journal of Life Cycle Assessment. 2009;14(5):480–9.

62.      Magnethermic Reactor.  Journal of the Southern African Institute of Mining and Metallurgy. 2013;113(6): 511–517.

63.      U.S. Geological Survey 2009. Mineral Commodity Summaries 2009 [Internet]. U.S. Geological Survey, 195 p.; Available from: https://www.google.com/search?source=hp&ei=o_VpW5DGFdCjmwXjpbTgAQ&q=mineral+commodity+summaries+2009&oq=MINERAL+COMMODITY+SUMMARIES+2009&gs_l=psy-ab.1.0.0i22i30k1l2.2344.2344.0.4909.1.1.0.0.0.0.232.232.2-1.1.0....0...1c.1.64.psy-ab..0.1.232....0.ISt9ESjN0

64.      Berry C. A Closer Look at Trumping. Acta Analytica [Internet]. 2015;30(1):41–57. Available from: http://link.springer.com/10.1007/s12136-014-0231-y

65.      Faramarz Kafi. تنها کارخانه شمش منیزیم خاورمیانه درگیر بی تدبیری ها و رانت ها / از 7 کوره احیا فقط یک کوره فعال است [Internet]. 1394. Available from: http://www.dana.ir/news/447891.html/تنها-کارخانه-شمش-منیزیم-خاورمیانه-درگیر-ب%DB

66.      Habashizade.. ایران به فناوری تولید منیزیم با خلوص 99/99 درصد دست یافت [Internet]. 1383-10-09. [cited 2018 Aug 22]. Available from: https://www.isna.ir/news/8310-03837/مدیر-کارخانه-ZPP-انرژی-هسته-یی-اصفهان-ایران-به-فناوری-تولید

67.      Hamid Reza Matin. Iran will not need to import magnesium – Aramico Company [Internet]. Aramico. 2017. Available from: http://arami-co.com/2017/10/07/with-the-construction-of-a-magnesium-extraction-plant-in-hamadan-iran-will-need-to-import-magnesium/

68.      International Affairs and PR. Listing Magnesium Ingot from Middle East’s Largest Producer by IME [Internet]. IME. 2016. Available from: http://en.ime.co.ir/ShowContent.html?i=bzBpUGhFaVgwNTQ9

69.      اتاق بازرگانی، صنایع، معادن و کشاورزی تهران [Internet]. Available from: http://www.tccim.ir/ImpExpStats_TarrifCustomCountry.aspx?slcImpExp=Export&slcCountry=&sYear=1396&mode=doit

70.      . منیزیم؛ فلز آینده [Internet]. 1396-11-23. Available from: http://www.felezatonline.ir/News-2439/منیزیم؛-فلز-آینده/?id=2439

71.      Mordike F. Magnesium Technology [Internet]. Vol. 1, Acta Materialia. 1996. 1-31 p. Available from: http://scholar.google.com/scholar?hl=en&q=physical+metallurgy+cahn+haasen&btnG=Search&as_sdt=0,5&as_ylo=&as_vis=0#0

72.      Ghali E. Properties, Use, and Performance of Magnesium and Its Alloys. In: Propertis of Magnesium Alloys. p. 321–47.

73.      International Magnesium Association. Magnesium Applications [Internet]. Available from: https://www.intlmag.org/page/mg_applications_ima

74.      Polmear IJ. Magnesium alloys and applications. Materials Science and Technology [Internet]. 1994;10(1):1–16. Available from: http://www.tandfonline.com/doi/full/10.1179/mst.1994.10.1.1

75.      Du J, Han W, Peng Y. Life Cycle Greenhouse Gases, Energy and Cost Assessment of Automobiles Using Magnesium from Chinese Pidgeon Process. Journal of Cleaner Production [Internet]. 2010;18(2):112–9. Available from: http://dx.doi.org/10.1016/j.jclepro.2009.08.013

76.      Kulekci MK. Magnesium and its Alloys Applications in Automotive Industry. International Journal of Advanced Manufacturing Technology. 2008;39(9–10):851–65.

77.      Joost WJ, Krajewski PE. Towards Magnesium alloys for High-Volume Automotive Applications. Scripta Materialia [Internet]. 2017;128:107–12. Available from: http://dx.doi.org/10.1016/j.scriptamat.2016.07.035

78.      Froes FH, Eliezer D, Aghion E. The Science , Technology , and Applications of Magnesium. 1998;(September).

79.      Madaj M, Greger M, Karas V. Magnesium-Alloy Die Forgings for Automotive Applications. Materiali in Tehnologije. 2015;49(2):267–73.

80.      Du CP, Xu DF. Application of Energy-Saving Magnesium Alloy in Automotive Industry. Advanced Materials Research [Internet]. 2013;734–737:2244–7. Available from: http://www.scientific.net/AMR.734-737.2244

81.      Niu XP, Skszek T, Fabischek M, Zak A. Low Temperature Warm Forming of Magnesium ZEK 100 Sheets for Automotive Applications. Thermec 2013. 2014;783:431–6.

82.      Wang SF, Hu WW, Gao ZH, Zhao TP. The application of magnesium alloy in automotive seat design. Applied Mechanics and Materials. 2013;395:266–70.

83.      Luo AA. Magnesium Casting Technology for Structural Applications. Journal of Magnesium and Alloys [Internet]. 2013;1(1):2–22. Available from: http://dx.doi.org/10.1016/j.jma.2013.02.002

84.      Yoon J, Lee SI. Warm forging of magnesium AZ80 alloy for the control arm in an automobile. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering. 2015;229(13):1732–8.

85.      Mao PL, Liu Z, Wang CY, Guo QY, Sun J, Wang F, et al. Fatigue behavior of magnesium alloy and application in auto steering wheel frame. Transactions of Nonferrous Metals Society of China (English Edition) [Internet]. 2008;18(SPEC. ISSUE 1):s218–22. Available from: http://dx.doi.org/10.1016/S1003-6326(10)60206-3

86.      Uematsu Y, Tokaji K, Kamakura M, Uchida K, Shibata H, Bekku N. Effect of extrusion conditions on grain refinement and fatigue behaviour in magnesium alloys. Materials Science and Engineering A. 2006;434(1–2):131–40.

87.      Blawert C, Hort N, Kainer KU. Automotive Applications of Magnesium and Its Alloys. Trans Indian Inst Met [Internet]. 2004;57(4):397–408. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-19244386270&partnerID=40

88.      Gupta M, Sharon NML. Magnesium, Magnesium Alloys, and Magnesium Composites. Magnesium, Magnesium Alloys, and Magnesium Composites. 2010.