بررسی خواص پوشش MoS2-Ti ایجاد شده توسط فرآیند پراکنش مگنترونی DC

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مدرس دانشگاه صنعتی بیرجند

2 استاد گروه مواد دانشگاه شهید باهنر کرمان

3 دانشجوی دکتری تربیت مدرس

چکیده

دی سولفید مولیبدن (MoS2) یکی از رایج‌ترین پوشش‌های روانکار جامد است که تاکنون با استفاده از روش‌های مختلفی، روی سطوح تحت سایش اعمال‌شده است. این پوشش به علت حساسیت بالا به رطوبت کارایی مناسبی در شرایط محیطی ندارد. یک روش برای کاهش حساسیت آن به رطوبت و اکسیژن هم رسوبی MoS2 با عناصر است. در این تحقیق پوشش‌های MoSx/Ti- به روش کندوپاش مغناطیسی جریان مستقیم، روی فولاد اعمال شد. نسبت تیتانیوم در پوشش با استفاده از تارگت های مختلف کنترل گردید. نتایج نشان داد که ضخامت و سختی پوشش های ایجاد شده به ترتیب 4-6 میکرومتر و 850-1400 ویکرز بود. میزان کریستالی ساختار با افزایش میزان تیتانیوم کاهش می‌یابد. حضور تیتانیوم در پوشش MoSx باعث بهبود چسبندگی و افزایش سختی پوشش می‌گردد. مقدار بهینه افزودن تیتانیوم برای ایجاد بهترین خواص سایشی پوشش MoSx (کمترین مقادیر ضریب اصطکاک و نرخ سایش) 5 درصد اتمی تعیین گردید. سایش ورقه‌ای و تریبوشیمی و خراشان با مکانیزم خیش ریز به‌عنوان مهم‌ترین مکانیزم‌های حاکم در سایش پوشش تعیین شد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the properties of MoS2-Ti coatings produced by DC magnetron sputtering

نویسندگان [English]

  • mahdi akbarzadeh 1
  • morteza zandrahimi 2
  • ehsan moradpoor 3
1 university of birjanf
2 Department of Metallurgy and Materials science, Faculty of Engineering, Shahid Bahonar University of Kerman, Jomhoori Eslami Blvd., Kerman, Iran
3 tarbiat modares
چکیده [English]

Molybdenum disulfide (MoS2) is one of the most widely used solid lubricants applied in different ways on the surfaces under friction. these coatings are very sensitive to water vapor and not suitable for applications in moist environments.. One way to improve the durability of a MoS2 film and also to reduce the deleterious effects of humidity and oxidation on its tribological performance is to co-sputter it with a metal in this study Ti-MoSx composite coatings were deposited onto AISI 1045 steel substrates by direct-current magnetron sputtering. The MoS2/Ni ratio in the coatings was controlled by sputtering the composite targets. The coatings were characterized X-ray diffraction (XRD), scanning electron miTioscopy (SEM), energy dispersive X-ray analysis (EDX), and nano-indentation and nano-sTiatch techniques. The tribological behavior of the coatings were investigated using the pin-on-disc test at room temperature. The results showed that the thickness, and the hardness of the coating were 4-6 µm, 850-1400 HV, respectively. The degree of Tiystallization of the composite coatings inTieased with inTieasing doped contents. The incorporation of Ti to MoSx coatings resulted in a considerable improvement of coating adhesion and hardness. The optimum doping level for Ti-MoSx coatings to show the best tribological properties,) with both the lowest friction coefficient and wear rate (was 5 atomic percent. The main wear mechanism of coating were delamination tribochemical and abrasive miTioTiacking.

کلیدواژه‌ها [English]

  • Keywords: Molybdenum disulfide
  • Lubricant coating
  • Physical vapor deposition. Wear behavior
  • Friction coefficient
[1]      Efeoglu I. Sputtering MoS2-based Coatings. Encyclopedia of Tribology: Springer; 2013;1: 3233-3252.

[2]      Wang Z.M. MoS2: Springer; 2013.

[3]      Stewart J.A. and Spearot D. Atomistic simulations of nanoindentation on the basal plane of crystalline molybdenum disulfide (MoS2). Modelling and Simulation in Materials Science and Engineering. 2013;21(4): 45003.

[4]      Renevier N. and Teer D. Properties of rubbed and Unworn bulk MoS2 Material MoS2 and MoS2/Titanium Composite Coatings Deposited by Closed Field Unbalanced Magnetron Sputter Ion Plating. 2015.

[5]      Huang C. Jin Y. Wang W. Tang L. Song C. and Xiu F. Manganese and chromium doping in atomically thin MoS2. Journal of Semiconductors. 2017;38(3): 33004.

[6]      Robertson A.W. Lin Y.-C. Wang S. Sawada H. Allen C.S. Chen Q. et al. Atomic structure and spectroscopy of single metal (Cr,V) substitutional dopants in monolayer MoS2. ACS nano. 2016;10(11):10227-10236.

[7]      Zhang K. Feng S. Wang J. Azcatl A. Lu N. Addou R. et al.Manganese doping of monolayer MoS2: the substrate is critical. Nano letters. 2015;15(10):6586-6591.

[8]      Zhang Y. Shockley J.M. Vo P. and Chromik R.R. Tribological Behavior of a Cold-Sprayed Cu–MoS2 Composite Coating During Dry Sliding Wear. Tribology Letters. 2016;62(1):1-12.

[9]      Siu J.H. and Li L.K. An investigation of the effect of surface roughness and coating thickness on the friction and wear behaviour of a commercial MoS2–metal coating on AISI 400C steel. Wear. 2000;237(2):283-287.

[10]    Bülbül F. Efeoglu I. and Arslan E. The effect of bias voltage and working pressure on S/Mo ratio at MoS2–Ti composite films. Applied surface science. 2007;253(9):4415-4419.

[11]    Lansdown A.R. Molybdenum disulphide lubrication: Elsevier; 1999.

[12]    Rigato V. Maggioni G. Boscarino D. Sangaletti L. Depero L. Fox V. et al. A study of the structural and mechanical properties of Ti/MoS2 coatings deposited by closed field unbalanced magnetron sputter ion plating. Surface and Coatings Technology. 1999;116:176-183.

[13]    Wieers E. Bipolar pulsed sputtering of MoSx coatings: plasma diagnostics micro-structural and tribological study. 2002.

[14]    Renevier N. Lobiondo N. Fox V. Teer D. and Hampshire J. Performance of MoS2/metal composite coatings used for dry machining and other industrial applications. Surface and coatings technology. 2000;123(1):84-91.

[15]    Wang X. Xing Y. Ma S. Zhang X. Xu K. and Teer D. Microstructure and mechanical properties of MoS2/titanium compositecoatings with different titanium content. surface and coatings Technology. 2007;201(9):5290-5293.

[16]    Qin X. Ke P. Wang A. and Kim K.H. Microstructure mechanical and tribological behaviors of MoS2-Ti composite coatings deposited by a hybrid HIPIMS method. Surface and Coatings Technology. 2013;228:275-281.

[17]    Lince J.R. Hilton M.R. and Bommannavar A.S. Metal incorporation in sputter-deposited MoS2 films studied by extended X-ray absorption fine structure. Journal of materials Research. 1995;10(8):2105-2119.

[18]    Ding X.-z. Zeng X. He X. and Chen Z. Tribological properties of Cr-and Ti-doped MoS2 composite coatings under different humidity atmosphere. surface and coatings Technology. 2010;205(1):224-231.

[19]    Holmberg K. and Matthews A. Coatings Tribology: Properties Mechanisms Techniques and Applications in Surface Engineering: Elsevier Science; 2009.

[20]    Gangopadhyay S. Acharya R. Chattopadhyay A. and Paul S. Effect of substrate bias voltage on structural and mechanical properties of pulsed DC magnetron sputtered TiN–MoSx composite coatings. Vacuum. 2010;84(6):843-850.

[21]    Wang H. Xu B. and Liu, J. Micro and Nano Sulfide Solid Lubrication: Springer Berlin Heidelberg; 2013.

[22]    Kao, W.-H. and Su, Y.-L. Optimum MoS2–Cr coating for sliding against copper, steel and ceramic balls. Materials Science and Engineering: A. 2004;368(1):239-248.

[23]    Ilie, F. and Covaliu, C. Tribological Properties of the Lubricant Containing Titanium Dioxide Nanoparticles as an Additive. Lubricants. 2016;4(2):12.

[24]    Hones, P., Diserens, M., and Levy F. Characterization of sputter-deposited chromium oxide thin films. Surface and Coatings Technology. 1999;120:277-283.

[25]    Bülbül F. and Efeoǧlu İ. MoS2-Ti composite films having (002) orientation and low Ti content. Crystallography Reports. 2010;55(7):1177-1182.

[26]    Song W. Deng J. Yan P. Wu Z. Zhang H. Zhao J. et al. Influence of negative bias voltage on the mechanical and tribological properties of MoS2/Zr compositefilms. Journal of Wuhan University of Technology--Materials Science Edition. 2011;26(3):412-416.

[27]    Deng J. Song W. Zhang H. and Zhao J. Friction and wear behaviours of MoS2/Zr coatings against hardened steel. Surface Engineering. 2008;24(6):410-415.

[28]    Renevier N. Fox V. Teer D. and Hampshire J. Performance of low friction MoS2/titanium composite coatings used in forming applications. Materials and Design. 2000;21(4):337-343.