شبیه سازی عددی و اعتبارسنجی آزمایشگاهی تحولات حرارتی و اعوجاج ایجاد شده در حین جوشکاری پرتو الکترونی روی ورق از جنس آلیاژ Ti-6Al-4V

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس بخش تحقیق و توسعه شرکت ماهان صنعت نوید تهران، تهران، ایران

2 کارشناس آزمایشگاه مواد پیشرفته و نانوتکنولوژی، دانشکده مهندسی و علم مواد، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

10.22076/me.2019.100621.1227

چکیده

جوشکاری پرتو الکترونی (EBW) یک روش جوشکاری با بازدهی و دقت بالا است که کاربرد آن در صنایع مختلف از جمله خودروسازی، هواپیمایی و هوافضا به شدت رو به افزایش است. شبیه‏ سازی فرآیند جوشکاری پرتو الکترونی با هدف پیشبینی تنش باقی‏مانده در قطعه کار و آنالیز پروفیل‏ های دمایی و تنشی حین فرآیند جوشکاری، به جهت امکان مهندسی جوش و پیشبینی شرایط بهینه، همواره مورد توجه محققین بوده است. در این پژوهش مدل المان محدود جوشکاری پرتو الکترونی به صورت سه‏ بعدی آماده شده و بر روی نرمافزار Abaqus بارگذاری شده است. این مدل شامل برهمکنش های حرارتی، مکانیکی و پدیده های متالورژیکی است. آنالیز حرارتی به صورت یکطرفه با آنالیز مکانیکی کوپل شده است. منبع حرارتی مورد استفاده، منبع حرارتی ترکیبی است که با استفاده از سابروتین و کدنویسی به زبان فورترن به آباکوس متصل شده است. جوشکاری در محیط خلاء بوده و اتلاف حرارت ناشی از هدایت حرارتی و تابش، در قسمت های مختلف بعنوان شرایط مرزی بر مدل اعمال شده است. قطعه کار از جنس آلیاژ Ti-6Al-4V بوده و خواص حرارتی و مکانیکی وابسته به دما تعریف شده است. تغییرات دمایی حین جوشکاری و تنش باقی‏مانده فلز پایه که از شبیه سازی عددی بدست آمده است با نتایج ثبت شده در بررسی های عملی قابل مقایسه بوده و تطابق قابل قبول حاصل شده که دقت مدل منبع حرارتی ترکیبی مورد استفاده در این پژوهش جهت مدل‏سازی جوشکاری پرتو الکترونی را نشان می دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Numerical simulation and experimental validation of thermal evolutions and welding-induced distortion of EBW in a plate of Ti-6Al-4V

نویسندگان [English]

  • Masoud Mehrabi Mehdiabadi 1
  • Mahdi Talebipour 2
1 Expert of R & D department of Mahan Sanat Navid Company of Tehran, Tehran, Iran
2 Expert of Advanced Materials and Nanotechnology Laboratory, Faculty of Materials Science and Engineering, Khaje Nasir Al-Din Tusi University, Tehran, Iran
چکیده [English]

Electron Beam Welding (EBW) is a high-efficiency, high-precision welding method that its application is increasing rapidly in various industries, including car manufacturing, aviation and aerospace. The simulation of the electron beam welding process with the aim of predicting the residual stress in the work piece and analyzing the temperature and stress profiles during the welding process has always been of interest to the researchers for the purpose of welding engineering and prediction of optimal conditions. In this research, the Finite Element Method (FEM) model of electron beam welding was prepared in 3D and loaded on the Abaqus software. This model includes thermal and mechanical interaction, and metallurgical phenomena. The thermal analysis is unilaterally coupled with mechanical analysis. The heat source that is used is a combined heat source that is attached to Abaqus using the subroutine and the Fortran coding. Welding is in a vacuum environment and the thermal dissipation due to thermal conductivity and radiation is applied in different parts as boundary conditions on the model. The workpiece is made of Ti-6Al-4V alloy and has thermal and mechanical properties which are defined dependent on temperature. The temperature variations during welding and the residual stress of the base metal which is obtained from the numerical simulation are comparable to the results recorded in the practical studies and an acceptable adaptation was made that shows the accuracy of the combined heat source model used in this research for modeling of electron beam welding.

کلیدواژه‌ها [English]

  • Simulation
  • electron beam welding (EBW)
  • heat source modeling
1.        Aburuga TKS, Sedmak AS, Radakovic ZJ. Numerical aspects for efficient welding computational mechanics. Therm Sci. 2013;17(1)139–148.

2.        Schultz H. Electron beam welding. Cambridge: Abington Publishing. 2005; 198-228.

3.        Luo Y, Liu J, Ye H. An analytical model and tomographic calculation of vacuum electron beam welding heat source. Vacuum. 2010;84(6)857–863.

4.        Lacki P, Adamus K. Numerical simulation of the electron beam welding process. Comput Struct. 2011;89(11–12) 977–985.

5.        Roberts J. ASM handbook of Welding brazing and soldering. ASM International. 1993; 2873.

6.        Cottrell CLM. Electron beam welding - a critical review. Mater Des. 1985;6 (6) 285–291.

7.        Tian Y, Wang C, Zhu D, Zhou Y. Finite element modeling of electron beam welding of a large complex Al alloy structure by parallel computations. J Mater Process Technol. 2008;199(1)41–48.

8.        Darmadi DB. Validating the accuracy of heat source model via temperature histories and temperature field in bead-on-plate welding. Int J Eng Technol. 2011;11 (5) 12–20.

9.        Lindgren LE. Finite element modeling and simulation of welding Part 1: Increased complexity. J Therm Stress. 2006;24 (11) 37–41.

10.      Lindgren LE. Finite element modeling and simulation of welding. part 2: Improved material modeling. J Therm Stress. 2001;24(3)195–231.

11.      Lindgren LE. Finite element modeling and simulation of welding. Part 3: Efficiency and integration. J Therm Stress. 2001;24(4)305–334.

12.      Deng D, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Comput Mater Sci. 2006;37(3)269–277.

13.      Deng D, Murakawa H, Liang W. Numerical simulation of welding distortion in large structures. Comput Methods Appl Mech Eng. 2007;196(45–48)4613–4627.

 

 

14.      Tadano S, Hino T, Nakatani Y. A modeling study of stress and strain formation induced during melting process in powder-bed electron beam melting for Ni superalloy. J Mater Process Technol. 2018;257 (2) 163–169.

15.      Liu C, Zhang J, Wu B, Gong S. Numerical investigation on the variation of welding stresses after material removal from a thick titanium alloy plate joined by electron beam welding. Mater Des. 2012;34 (1) 609–617.

16.      Karlsson K, Sorensen H. Abaqus Theory Manual Version 5. Simulia. 2016; 414.

17.      Tsirkasa S, Papanikos P, Kermanidis T. Numerical Simulation of the Laser Welding. J Mater Process Technol. 2013;134 (3) 59–69.

18.      Babalová E, Behúlová M. Numerical simulation of temperature fields by welding of Ti-Al alloys applying volumetric heat source. Adv Mater Res. 2014;887–888 (1) 1280–1283.

19.      Liu C, Wu B, Zhang JX. Numerical investigation of residual stress in thick titanium alloy plate joined with electron beam welding. Metall Mater Trans B Process Metall Mater Process Sci. 2010;41 (5)1129–1138.

20.      Cai Z, Zhao H. Efficient finite element approach for modelling of actual welded structures. Sci Technol Weld Join. 2003;8(3)195–204.

21.      Michaleris P, Debiccari A. Prediction of welding distortion. Am Weld Soc - Weld J. 1997;76 (April) 172–181.

22.      Eisazadeh H, Bunn J, Achuthan A, Goldak J, Aidun DK. A Residual Stress Study in Similar and Dissimilar Welds. Weld J Res Suppl. 2016; 95 (April):111–119.

23.      Bermingham MJ, McDonald SD, Nogita K, St. John DH, Dargusch MS. Effects of boron on microstructure in cast titanium alloys. Scr Mater. 2008;59 (5) 538–541.

24.      Rai R, Burgard P, Milewski JO, Lienert TJ, DebRoy T. Heat transfer and fluid flow during electron beam welding of 21Cr – 6Ni – 9Mn steel and Ti – 6Al – 4V alloy. J Phys D: Appl Phys. 2009; 42 (1) 1-12.

25.      Chiumenti M, Cervera M, Dialami N, Wu B, Jinwei L, Agelet de Saracibar C. Numerical modeling of the electron beam welding and its experimental validation. Finite Elem Anal Des. 2016;121 (1) 118–133.