اثر عملیات زیرصفر عمیق روی رسوب سختی آلومینیم 2024 و 7075

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد آیت الله آملی- دانشکده مهندسی

2 موسسه غیرانتفاعی نقش جهان اصفهان، اصفهان، ایران.

3 دانشکده مهندسی، واحد آیت الله آملی، دانشگاه آزاد اسلامی، آمل، ایران

چکیده

عملیات زیر صفر یک روش کارآمد برای افزایش کارآیی آلیاژهای فلزی است و به علاوه، پیرسختی یک روش متداول برای افزایش نسبت استحکام به وزن آلیاژهای آلومینیم 2024 و 7075 به منظور استفاده در بدنه هواپیماهای مسافربری است. در این تحقیق، اثر عملیات زیرصفر در دمای 196- درجه سانتیگراد (زیرصفرعمیق) با مدت زمان نگهداری 4 ساعت روی میزان رسوب سختی آلیاژهای آلومینیم 2024 و 7075 مطالعه می شود. به همین منظور، برای مطالعه ریزساختار از میکروسکپهای الکترونی روبشی (SEM) و روبشی-عبوری (STEM) استفاده شده است. همچنین، برای مطالعه خواص مکانیکی از آزمون کشش و سختی استفاده شده است. نتایج نشان داده است که با انجام عملیات زیرصفر، تشکیل رسوب در مجاورت ذرات موجود در زمینه بویژه برای ذره آهن، تسهیل می شود زیرا در دماهای زیرصفر، اختلاف ضریب انقباض آهن با زمینه آلومینیم موجب می شود تا در دمای پیرسختی برابر با 100 درجه سانتیگراد، اتمهای عناصر آلیاژی (مانند مس در آلیاژ 2024 و منیزیم در آلیاژ 7075) راحت تر جذب نواحی اطراف ذره آهن شوند. تشکیل رسوبهای جدید موجب شده است که استحکام تسلیم آلومینیم 2024 و 7075 نسبت به نمونه شاهد به ترتیب 32 و 20 مگاپاسکال و همچنین استحکام کششی آلومینیم 2024 و 7075 نسبت به نمونه شاهد به ترتیب 26 و 21 مگاپاسکال افزایش پیدا کرده است. درحالیکه در هر دو جنس، سختی تغییر محسوسی نکرده است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Deep Cryogenic Treatment on Precipitation Hardening of Aluminum 2024 and 7075

نویسندگان [English]

  • Seyed Ebrahim Vahdat 1
  • Fariborz Faraji 2
  • Hadi Nazarian 3
1 Islamic Azad University, Ayatollah Amoli Branch, Department of Engineering
2 Naghsh Jahan Esfahan School University, Esfahan, Iran
3 Department of Engineering, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran.
چکیده [English]

Sub-zero treatment is an efficient method for increasing the efficiency of metal alloys. In addition, aging is a common method for increasing the ratio of the strength to weight of aluminum alloys 2024 and 7075 for using in a passenger aircraft. In this research, the effect of sub-zero treatment at temperature of -196° C (deep cryogenic treatment) and time of 4 hours on the hardness of aluminum alloys 2024 and 7075 are studied. For this purpose, scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) have been applied to study the microstructure. Also, tensile and hardness tests have been applied to study mechanical properties. The results show that the formation of precipitation around the particles (especially for iron particles) is facilitated by performing sub-zero treatment. Because the difference in the coefficient of iron contraction with the aluminum matrix at sub-zero treatment causes elements (such as copper in 2024 and magnesium in alloy 7075) are easier to absorb the areas around iron particles at aging temperature of 100 ° C. The new precipitates increased the yield strength of aluminum 2024 and 7075 compared to the control specimen, 32 and 20 MPa, respectively, and the tensile strength of aluminum 2024 and 7075 increased 26 and 21 MPa, respectively. While in both specimens, the change of hardness was not noticeable.

کلیدواژه‌ها [English]

  • Population density of particles
  • Liquid nitrogen
  • Heat treatment
  • Precipitation Hardening
  • Age Hardening

 

1.  مترجمین: ،طهماسبی ا, ،اسدی خ, ،محمودی ر, (نویسنده: پالمیر). آلیاژهای سبک: آلومینیوم، منیزیم و تیتانیم. تهران: ارکان دانش; 1393. 324 صفحه.

2.  Nayan N, Narayana Murty SVS, Jha AK, Pant B, Sharma SC, George KM, et al. Mechanical properties of aluminium–copper–lithium alloy AA2195 at cryogenic temperatures. Materials & Design. 2014;58:445-50.

3.  Nayan N, Narayana Murty SVS, Mukhopadhyay AK, Prasad KS, Jha AK, Pant B, et al. Ambient and cryogenic tensile properties of AA2195T87 sheets with pre-aging cold work by a combination of cold rolling and stretching. Materials Science and Engineering: A. 2013;585:475-9.

4.  Li CM, Cheng NP, Chen ZQ, Guo N, Zeng SM. Deep-cryogenic-treatment-induced phase transformation in the Al-Zn-Mg-Cu alloy. International Journal of Minerals, Metallurgy and Materials. 2015;22(1):68-77.

5.  Mahmudi R. Grain boundary strengthening in a fine grained aluminium alloy. Scripta Metallurgica et Materialia. 1995;32(5):781-6.

6.  شاعری مح, شاعری م, صالحی م, سیدین س, ابوطالبی م. بررسی اثر فرآیند ECAP بر بافت آلیاژ آلومینیوم 7075. مهندسی متالورژی. 2015;17(56):49-57.

7.  Schneider R, Grant RJ, Sotirov N, Falkinger G, Grabner F, Reichl C, et al. Constitutive flow curve approximation of commercial aluminium alloys at low temperatures. Materials & Design. 2015;88:659-66.

8.  Meng XK, Zhou JZ, Tan WS, Su C, Huang S. Reening mechanism of laser shock wave in Al-Cu alloy at liquid nitrogen temperature. Guangxue Jingmi Gongcheng/Optics and Precision Engineering. 2016;24:245-51.

9.  Li J, Cai X, Wang Y, Wu X. Multiscale Analysis of the Microstructure and Stress Evolution in Cold Work Die Steel during Deep Cryogenic Treatment. Materials. 2018;11(11):2122.