بررسی رابطه سختی هال ـ پچ در ناحیه همزده جوش‌های همزن اصطکاکی فولاد کربنی و فولاد زنگ‌نزن آستنیتی

نوع مقاله : مقاله پژوهشی

نویسنده

گروه مهندسی مواد، دانشکده فنی و مهندسی، دانشگاه بین المللی امام خمینی (ره)، قزوین، ایران

چکیده

جوشکاری همزن اصطکاکی، روشی نوین و موثر برای جوشکاری بسیاری آلیاژهای دارای مشکل جوشکاری و همچنین برای اتصال آلیاژهای غیر همجنس می باشد. در تحقیق حاضر، جوشکاری همزن اصطکاکی برای اتصال غیرهمجنس لب به لب فولاد کم کربن st37 به فولاد زنگ نزن آستنیتی 304 در سرعت های چرخشی مختلف استفاده شده است. نتایج بررسی های آزمایشگاهی نشان داد که ناحیه همزده در فولاد 304 شواهد وقوع بازبلوری پویا را به همراه چگالی متوسطی از نابجایی ها را در خود دارد. ناحیه همزده در فولاد st37 اگرچه در معرض بازبلوری قرار گرفته ولی وقوع استحاله آلوتروپی در حین سرد شدن فولاد پس از جوشکاری، شواهد وقوع بازبلوری را از بین می برد و ریزساختاری حاوی عمدتاً فریت و پرلیت ریز باقی می گذارد. رابطه سختی و ریزساختار از طریق رابطه هال-پچ سختی برای نواحی همزده در هر دو فولاد بررسی گردید. نتایج برازش به روش حداقل مربعات وزنی نشان داد که سختی متوسط نواحی همزده هر دو فولاد طبق رابطه هال-پچ با اندازه دانه، رابطه معکوس دارد. سختی نواحی همزده و فلز پایه فولاد 304 روی یک خط هال-پچ قرار نمی گیرد که این موضوع را می توان به وجود نابجایی های نسبتاً بیشتر ناشی از بازبلوری پویا در نواحی همزده مربوط دانست.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of hardness Hall-Petch relationship in the stir zone of fiction stir welds between austenitic stainless steel and plain carbon steel

نویسنده [English]

  • Mostafa Jafarzadegan
Materials Science Department, Faculty of Engineering, Imam Khomeini International University, Qazvin, Iran
چکیده [English]

Friction stir welding is a new and effective method for joining the alloys with welding problems and also for the dissimilar alloys. In the present study, friction stir welding is used to join st37 low carbon to 304 stainless steel plates at different tool rotation speeds. The stir zone in the 304 steel shows evidence of dynamic recrystallization with a moderate dislocation density. The stir zone in the st37 steel appears to experience dynamic recrystallization too, although the allotropic transformation during cooling cycle of the welds removes the features of dynamic recrystallization and produces a fine ferrite-pearlite microstructure with a low dislocation density. The relationship between hardness and microstructure is investigated through Hall-Petch equation for the stir zone of both steels. The results of weighted least-squares fit also show that the average hardness of austenite in the 304 steel and ferrite in the st37 steel inside the stir zones has a reverse relation with hardness according to the Hall-Petch equation. The hardness of the base metal and the stir zones of 304 steel does not stand on a same Hall-Petch line that can be attributed to the relatively higher dislocations due to the dynamic recrystallization of stir zones.

کلیدواژه‌ها [English]

  • Dissimilar Friction Stir Welding
  • Microstructure
  • Hardness
  • Hall-Petch Relationship
1.             Mishra RS, Ma ZY. Friction stir welding and processing. Materials Science and Engineering: R: Reports. 2005;50(1):1-78.
2.             Thomas WM, Nicholas ED, Needham JC, Murch MG, Templesmith P, Dawes CJ, inventorsfriction stir welding1991.
3.             Sato YS, Nelson TW, Sterling CJ. Recrystallization in type 304L stainless steel during friction stirring. Acta Materialia. 2005;53(3):637-45.
4.             F. J. Humphreys, Hotherly M. Recrystallization and Related Annealing Phenomena. 2nd ed. New York: Pergamon Press; 1995.
5.             R. Nandan, T. DebRoy, Bhadeshia HKDH. Recent advances in friction-stir welding – Process, weldment structure and properties. Progress in Materials Science. 2008;53:980-1023.
6.             Sato YS, Urata M, Kokawa H, Ikeda K. Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Materials Science and Engineering: A. 2003;354(1):298-305.
7.             Sato YS, Park SHC, Kokawa H. Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys. Metallurgical and Materials Transactions A. 2001;32(12):3033-42.
8.             Park SHC, Sato YS, Kokawa H. Microstructural evolution and its effect on Hall-Petch relationship in friction stir welding of thixomolded Mg alloy AZ91D. Journal of Materials Science. 2003;38(21):4379-83.
9.             Xie GM, Ma ZY, Geng L. Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper. Scripta Materialia. 2007;57(2):73-6.
10.          Yabuuchi K, Tsuda N, Kimura A, Morisada Y, Fujii H, Serizawa H, et al. Effects of tool rotation speed on the mechanical properties and microstructure of friction stir welded ODS steel. Materials Science and Engineering: A. 2014;595(Supplement C):291-6.
11.          Kurt B. The interface morphology of diffusion bonded dissimilar stainless steel and medium carbon steel couples. Journal of Materials Processing Technology. 2007;190(1):138-41.
12.          J. C. Lippold, Kotecki DJ. Welding metallurgy and weldability of stainless steels. 1st ed. New Jersey: John Wily & Sons; 2005.
13.          Reynolds AP, Tang W, Gnaupel-Herold T, Prask H. Structure, properties, and residual stress of 304L stainless steel friction stir welds. Scripta Materialia. 2003;48(9):1289-94.
14.          Lakshminarayanan AK, Balasubramanian V, Salahuddin M. Microstructure, Tensile and Impact Toughness Properties of Friction Stir Welded Mild Steel. Journal of Iron and Steel Research, International. 2010;17(10):68-74.
15.          Ren SR, Ma ZY, Chen LQ. Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al–Mg–Si alloy. Scripta Materialia. 2007;56(1):69-72.
16.          Bisadi H, Tavakoli A, Tour Sangsaraki M, Tour Sangsaraki K. The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints. Materials & Design. 2013;43(Supplement C):80-8.
17.          Sato YS, Urata M, Kokawa H. Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063. Metallurgical and Materials Transactions A. 2002;33(3):625-35.
18.          Lienert TJ, Stellwag Jr WL, Grimmett BB, Warke RW. Friction Stir Welding Studies on Mild Steel. supplement to the welding journal. 2003:1s-9s.
19.          J.Q. Li, Liu HJ. Effects of the Reversely Rotating Assisted Shoulder on Microstructures During the Reverse Dual-rotation Friction Stir Welding. Journal of Materials Science & Technology. 2015;31:375-83.
20.          D.A. Wadeson, X. Zhou, G.E. Thompson, P. Skeldon, L. Djapic Oosterkamp, Scamans G. Corrosion behaviour of friction stir welded AA7108 T79 aluminium alloy. Corrosion Science. 2005.
21.          Li JQ, Liu HJ. Effects of the Reversely Rotating Assisted Shoulder on Microstructures During the Reverse Dual-rotation Friction Stir Welding. Journal of Materials Science & Technology. 2015;31(4):375-83.
22.          Benavides S, Li Y, Murr LE, Brown D, McClure JC. Low-temperature friction-stir welding of 2024 aluminum. 1999.
23.          Genevois C, Deschamps A, Denquin A, Doisneau-cottignies B. Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds. Acta Materialia. 2005;53(8):2447-58.
24.          Wang BB, Chen FF, Liu F, Wang WG, Xue P, Ma ZY. Enhanced Mechanical Properties of Friction Stir Welded 5083Al-H19 Joints with Additional Water Cooling. Journal of Materials Science & Technology. 2017;33(9):1009-14.
25.          Kamal Babu K, Panneerselvam K, Sathiya P, Haq AN, Sundarrajan S, Mastanaiah P, et al. Influences of metastable θ″, θ′ and stable θ intermetallics formed during cryorolling and friction stir welding process on AA2219. Journal of Alloys and Compounds. 2018;732:624-9.
26.          Ueji R, Fujii H, Cui L, Nishioka A, Kunishige K, Nogi K. Friction stir welding of ultrafine grained plain low-carbon steel formed by the martensite process. Materials Science and Engineering: A. 2006;423(1):324-30.
27.          Dieter GE. Mechanical metallurgy. 3rd ed: McGraw-Hill book company, London; 1988.
28.          Di Schino A, Kenny JM. Grain refinement strengthening of a micro-crystalline high nitrogen austenitic stainless steel. Materials Letters. 2003;57(12):1830-4.
29.          Di Schino A, Barteri M, Kenny JM. Effects of grain size on the properties of a low nickel austenitic stainless steel. Journal of Materials Science. 2003;38(23):4725-33.
30.          I.G. Hughes, Hase TPA. Measurement and their uncertainties. New York: Oxford university press; 2010.