بررسی تاثیر دمای پیرسازی مرحله اول در عملیات پیرسازی دو مرحله ای، بر خواص مکانیکی و ریزساختار آلیاژآلومینیوم- مس- منیزیم

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران،

2 استادیار ، گروه مهندسی مواد و متالورژی، دانشکده فنی و مهندسی، دانشگاه اراک،

3 دانشجوی کارشناسی ارشد، گروه مهندسی مواد و متالورژی، دانشکده فنی و مهندسی، دانشگاه اراک،

4 مهندس مواد ، گروه مهندسی مواد و متالورژی، دانشکده فنی و مهندسی، دانشگاه اراک

5 مهندس مواد، کارشناس تحقیق و توسعه، شرکت تکنو اراک

چکیده

در این تحقیق، تاثیر دمای مرحله اول پیرسازی در پیرسختی دو مرحله ای بر استحکام، انعطاف پذیری، سختی و ریزساختار آلیاژ آلومینیوم- مس- منیزیم مورد بررسی قرار گرفته است تا ترکیب بهینه ای از استحکام و نرمی حاصل گردد. به این منظور پس از انجام عملیات انحلالی نمونه ها و کوئنچ آنها در آب، ابتدا نمونه ها در سه دمای °C 175، 190، 205 به مدت 2 ساعت پیرسازی تک مرحله ای شدند. سپس نمونه ها بصورت طبیعی برای زمانهای 10، 50، 100 ساعت پیرسازی طبیعی شدند. برای بررسی خواص مکانیکی، تمامی نمونه ها بلافاصله پس از اتمام سیکل ها، تحت آزمایش کشش و بررسی ریزساختاری قرار گرفتند. نتایج نمونه های پیرسازی تک مرحله ای با دو مرحله ای با یکدیگر مقایسه و علاوه بر تاثیر پیرسازی دو مرحله ای، تاثیر دمای مرحله اول نیز مورد ارزیابی قرار گرفت. نتایج نشان می دهد که پیرسازی طبیعی مرحله دوم با تاثیر بر پایداری رسوبات و ریزساختار منجر به تغییر خواص کششی می گردد. بطوریکه هر چه دمای پیرسازی مرحله اول افزایش می یابد، تاثیر مرحله دوم پیرسازی کمتر می شود. همچنین پیرسازی دومرحله ای با دمای مرحله اول °C190 و زمان پیرسازی طبیعی مرحله دوم h50، به ترکیب بهینه ای از استحکام و نرمی منجر شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Study on the effect of first step agetemperature on the mechanical properties and microstructure of Al-Cu-Mg alloy intwo steps aging process

نویسندگان [English]

  • bahman mirzakhani 1
  • Yousef Payandeh 2
  • hamed talebi 3
  • Mohammad Maleki 4
  • Mohsen Bahrami 5
1 School of Metallurgy and Materials Science, Iran University of Science and Technology
2 Department of Materials Science and Engineering, Arak University, Arak,
3 Department of Materials Science and Engineering, Arak University, Arak,
4 Department of Materials Science and Engineering, Arak University
5 Research and Development of Techno Arak,
چکیده [English]

In this research, the effect of first step age temperature during two steps aging process on the strength, ductility, hardness and microstructure of Al-Cu-Mg alloy has been investigated to obtain an optimum combination of strength and ductility. After solution treatment and quenching the samples in the water, they have artificially been aged for 2 hours in 175, 190, 205°C. Then the samples were naturally aged for 10, 50, 100 hours. To investigate the mechanical properties, all the samples were subjected to tensile test and microstructure analysis after each cycle. The data of one and two steps aging treatment and also the effect of first step temperature were compared. The results show that second step of natural aging by affecting the stability of precipitates and microstructure leads to change in tensile properties. With increasing the first step aging temperature, the impact of second step aging process decreases. Also two steps aging process with temperature of 190°C in first step and time of 50 hours in naturally aging results in and optimum combination of strength and ductility.

کلیدواژه‌ها [English]

  • Al-Cu-Mg alloy
  • two steps aging
  • tensile properties
  • Microstructure

 

[1]           Chen K, Liu H, Zhang Z, Li S, Todd RI. The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments. Journal of Materials Processing Technology. 2003;142(1):190-6.

[2]           Koch S, Abad MD, Renhart S, Antrekowitsch H, Hosemann P. A high temperature nanoindentation study of Al–Cu wrought alloy. Materials Science and Engineering: A. 2015;644:218-24.

[3]           Ambriz R, Jaramillo D. Mechanical behavior of precipitation hardened aluminum alloys welds.  Light Metal Alloys Applications: InTech; 2014.

[4]           Lumley R, Polmear I, Morton A. Interrupted aging and secondary precipitation in aluminium alloys. Materials Science and Technology. 2003;19(11):1483-90.

[5]           Lumley R, Polmear I, Morton A, editors. Temper developments using secondary ageing. Materials Forum; 2004.

[6]           Alexopoulos ND, Velonaki Z, Stergiou CI, Kourkoulis SK. The effect of artificial ageing heat treatments on the corrosion-induced hydrogen embrittlement of 2024 (Al–Cu) aluminium alloy. Corrosion Science. 2016;102:413-24.

[7]           Tsai JM-J. A study of interrupted aging in Al-Cu-Mg alloys: Colorado School of Mines. Arthur Lakes Library; 2013.

[8]           Polmear I. Light metals: from traditional alloys to nanocrystals. Elsevier, Oxford. 2006.

[9]           Emani S, Benedyk J, Nash P, Chen D. Double aging and thermomechanical heat treatment of AA7075 aluminum alloy extrusions. Journal of materials science. 2009;44(23):6384-91.

[10]         Löffler H, Kovacs I, Lendvai J. Decomposition processes in Al-Zn-Mg alloys. Journal of Materials Science. 1983;18(8):2215-40.

[11]         Lumley R, Polmear I, Morton A. Development of mechanical properties during secondary aging in aluminium alloys. Materials Science and Technology. 2005;21(9):1025-32.

[12]         Buha J, Lumley R, Crosky A. Secondary ageing in an aluminium alloy 7050. Materials Science and Engineering: A. 2008;492(1):1-10.

[13]         Marceau R, Sha G, Lumley R, Ringer S. Evolution of solute clustering in Al–Cu–Mg alloys during secondary ageing. Acta Materialia. 2010;58(5):1795-805.

[14]Gao N, Starink M, Kamp N, Sinclair I. Application of uniform design in optimisation of three stage ageing of Al–Cu–Mg alloys. Journal of materials science. 2007;42(12):4398-405.

[15]         Mansourinejad M, Mirzakhani B. Influence of sequence of cold working and aging treatment on mechanical behaviour of 6061 aluminum alloy. Transactions of Nonferrous Metals Society of China. 2012;22(9):2072-9.

[16]         Nagai Y, Murayama M, Tang Z, Nonaka T, Hono K, Hasegawa M. Role of vacancy–solute complex in the initial rapid age hardening in an Al–Cu–Mg alloy. Acta materialia. 2001;49(5):913-20.

[17]         Marceau RK, Tsafnat N, Haley D, Ringer S. Solute diffusion characteristics of a rapid hardening Al-Cu-Mg alloy during the early stages of age hardening. Metallurgical and Materials Transactions A. 2010;41(8):1887-90.

[18]         Mondolfo L. Aluminum alloys. Structure and properties. 1976;338.

[19]         Seyedrezai H, Grebennikov D, Mascher P, Zurob HS. Study of the early stages of clustering in Al–Mg–Si alloys using the electrical resistivity measurements. Materials Science and Engineering: A. 2009;525(1):186-91.