تولید فاز آمورف در سیستمAl80Fe20به روش آلیاژسازی مکانیکی و بررسی پایداری حرارتی آن

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه مهندسی فناوری‌های نوین قوچان

2 استاد گروه مهندسی مواد و متالورژی، دانشکده مهندسی، دانشگاه فردوسی مشهد،

3 کارشناس اداره صنعت، معدن و تجارت استان خراسان رضوی و کارشناسی ارشد مهندسی مواد و متالورژی،

چکیده

در این پژوهش از فرآیند آلیاژسازی مکانیکی به منظور تولید فاز آمورف در سیستم Al80Fe20 استفاده شد. تغییرات اندازه دانه، رفتار حرارتی و پسماند مغناطیسی نمونه‌های تولید شده در زمان‌های مختلف آسیاکاری مورد مطالعه قرار گرفت. آزمون‌های انجام شده بر روی نمونه‌های آسیاکاری شده شامل پراش اشعه ایکس (XRD)، تعیین پسماند مغناطیس و گرماسنجی پویشی تفاضلی (DSC) می‌باشد. نتایج حاکی از آن است که در این سیستم، مدت زمان لازم برای رسیدن به فاز آمورف 70 ساعت می‌باشد. پیک‌های مربوط به آزمون گرماسنجی پویشی تفاضلی بیانگر تبلور فاز آمورف در حین حرارت‌دهی هستند که تشکیل فاز آمورف در طی فرآیند آلیاژسازی مکانیکی را تایید می‌کند. به علاوه، ادامه آسیاکاری پس از رسیدن به فاز آمورف موجب شکل‌گیری مجدد فازهای بلورین Al و Al3Fe در آلیاژ مورد مطالعه می‌شود. همچنین، آمورف شدن آلیاژ تا 70 ساعت آسیاکاری منجر به کاهش پسماند مغناطیس تا T 11/0 و در نتیجه، بهبود رفتار مغناطیسی نرم می‌شود.
کلمات کلیدی: سیستم Al80Fe20، فاز آمورف، آلیاژسازی مکانیکی، زمان آسیاکاری، پسماند مغناطیس.

کلیدواژه‌ها


عنوان مقاله [English]

Manufacturing of Amorphous Phase in the Al80Fe20 System through Mechanical Alloying and Investigation on the Thermal Stability of Its

نویسندگان [English]

  • Hamid Sazegaran 1
  • Jalil Vahdati Khaki 2
  • Seyed Iman Vahabzadeh 3
1 Assistant Professor, Department of Industrial Engineering, Faculty of Engineering, Quchan University of Advanced Technology
2 Professor, Department of Materials Engineering, Faculty of Engineering, Ferdowsi University of Mashhad
3 Expertof Industrial, Mine, and Trade Department of KhorasanRazavi and MSc Materials Engineering,
چکیده [English]

In this present study, the mechanical alloying technique was used to the amorphization of Al80Fe20 system. The particle size, the thermal behavior, and the magnetic properties were investigated on the milled specimens in the different milling times. The performed tests on the milled specimens included the X-ray diffraction (XRD), determine the magnetic properties, and the Differential scanning calorimetry (DSC). The results were shown that the milling time for the amorphization was 70 h, in this system. The peaks of DSC were demonstrated that the mechanical alloying caused to formation of the amorphous phase. It is noteworthy that increasing the milling time after 70 h caused to formation of the crystalline Al and Al3Fe phases. In addition, the amorphization of used alloy at 70 h caused to decreasing the residual magnetism to 0.11 T and improving the soft magnetic behavior.
Keywords: Al80Fe20 system, Amorphous phase, Mechanical alloying, Milling time, Magnetic properties.

کلیدواژه‌ها [English]

  • Al80Fe20 system
  • Amorphous phase
  • Mechanical alloying
  • Milling time
  • Magnetic Properties

[1]Suryanarayana C. Mechanical alloying and milling.Progr MaterSci 2001; 46: 175-184

[2] LuL, LaiMO. Mechanical Alloying. Springer science + business media. LLC. 1998

[3] ZhaoYH. Thermodynamic Model for Solid-State Amorphization of Pure Elements by Mechanical-Milling. J Non Cry Sol 352; 2006: 5578–5585

[4] SchultzL. Formation of amorphous metals by mechanical alloying. Mater SciEng 97; 1988: pp. 15-23

[5] FroesaFH, SuryanarayanaC,RussellK, LiCG.Synthesis of intermetallics by mechanical alloying. Mater SciEngA 192/193; 1995: 612-623

[6]PatilU, HongSJ, SuryanarayanaC.An unusual phase transformation during mechanical alloying of a Fe-based bulk metallic glass composition. JAlloyComp 389; 2005: 121–126

[7]MassalskiTB. Binary Alloy Phase Diagrams. ASM Intern 1. Metals Park. OH. 1986.

[8] NuthalapatiM, KarakSK,BasuA.Synthesis and Characterization of Nano-Y2O3 Dispersed Zr-based Alloys by Mechanical Alloying and Conventional Sintering.Mater Today Proceed 2(4–5); 2015: 1109-1117

[9] NuthalapatiM, KarakSK, ChakravartyD, BasuA. Development of nano-Y2O3 dispersed Zr alloys by mechanical alloying and spark plasma sintering.Mater SciEngA650(5); 2016: 145–153

[10] FogagnoloJB,  RodriguesCAD, BorbaEC, KiminamiCS, BolfariniC, BottaWJ. Nanostructured Al89Fe10Zr1 Alloy Obtained by Mechanical Alloying.J Meta Nanocry Mater 20-21; 2004: 183-188

[11] OuyangY, ZhongX, ShiH, DuY, HeY.Crystallization of Al2FeZr6 Amorphous Alloy Prepared by Mechanical Alloying. Mater Transac 47(2); 2006: 388-391

[12] ChenH, OuyangY, GuoD, LiaoS,ZhongX, DucY, LiuY. The formation and crystallization for amorphous AlFeZr4 prepared by mechanical alloying.Physica B 405; 2010: 2005–2008

[13] OuyangY, ChenH, ZhongX, DuY.(FeAl3) 1− xZrx amorphous alloys prepared by mechanical alloying.Physica B 391; 2007: 380–384

[14] DutkiewiczJ, JaworskaL, MaziarzW,CzeppeT, LejkowskaM, KubicekM, PastrnakM. Consolidation of amorphous ball-milled Zr–Cu–Al and Zr–Ni–Ti–Cu powders. J Alloy Comp 434–435; 2007: 333–335

[15]EnzoS, FrattiniR, GuptaR, MacriPP, PrincipiG, SchiffiniL, ScipioneG.X-ray powder diffraction and Mossbauer study of nanocrystalline Fe-Al prepared by mechanical alloying.Acta Mater 44; 1996: 3105-3113

[16] CardelliniF, ContiniV, GuptaR, MazzoneG, MontoneA, PerinA, PrincipiG.Microstructural Evolution of Al-Fe Powder Mixtures during High-Energy Ball Milling. J Mater Sci 33; 1998: 2519-2527

[17]EelmanDA, DahnJR, MacKayGR, DunlapRA.An investigation of mechanically alloyed Fe-Al. Journal of Alloy Comp 266; 1998: 234-240

[18]JartychE, ZurawiczJK, OleszakD, PekalaM.Magnetic Properties and Structure of Nanocrystalline Fe-Al and Fe-Ni Alloys.Nanostruc Mater 12; 1999: 927-930

[19]OleszakD, ShinguPH.Amorphous Fe-Al alloys obtained by mechanical alloying. MaterSci Forum 235–238; 1997: 91-96

[20] ZhouF, LuckR, SchefferM, LangD, LuK.Formation and crystallization of an amorphous Al80Fe10Ti5Ni3B2. J NonCrySol 250–252; 1999: 704-708

[21]DutkiewiczJ, JaworskaL, MaziarzW, CzeppeT, LejkowskaM, KubicekM, PastrnakM.Consolidation of amorphous ball-milled Zr-Cu-Al and Zr-Ni-Ti-Cu powders. J Alloy Comp 434–435: 2007: 333–335

[22]NiessenAK, de BoerFR, BoomR, de ChatelPF, MatthewsWCM, MiedemaAR.Model predictions for the enthalpy of formation of transition metal alloys II.Calphad 7(1); 1983: 51-70

[23] OleszakD, ShinguPH. Amorphous Fe-Al alloys obtained by mechanical alloying. Mater SciForum 235-238; 1997: 91-96

[24] BenjaminJS. New materials by mechanical alloying techniques. DGM confer. Calw-Hirsau (FRG). 1988

[25] SuntharavelMuthaiah VM, Mula S. Effect of zirconium on thermal stability of nanocrystallinealuminiumalloy prepared by mechanical alloying, J AllComp 688; 2016: 571-580

[26]YelsukovEP, UlyanovAL, ProtasovAV, KolodkinDA. Solid-state reactions upon mechanical alloying of a Fe32Al68 binary mixture.Phys MetMetallogr 113 (6); 2012: 602–611

[27]GilmanPS, NixWD. The structure and properties of aluminum alloys produced by mechanical alloying: Powder processing and resultant powder structures.Metall TransA 12(5); 1999: 813–824

[28]GharsallahHI, SekriA, AzabouM, EscodaL, SunolJJ, KhitouniM.Structural and Thermal Study of Nanocrystalline Fe-Al-B Alloy Prepared by Mechanical Alloying.Metallur Mater Trans A 46(8);2015: 3696–3704

[29] BachagaT, DalyR, EscodaL, SunolJJ, KhitouniM.Amorphization of Al50(Fe2B)30Nb20Mixture by Mechanical Alloying.Metallur Mater Trans A 44(10); 2013: 4718–4724

[30] HenryMEM,WillardMA,LaughlinDE.Amorphous and nanocrystalline materials for applications as soft magnets.Prog Mater Sci44; 1999: 291-433

[31] HenryMEM, WillardMA,IwanabeH, SuttonRA, TurgutZ, HsiaoA, LaughlinDE.Nanocrystalline materials for high temperature soft magnetic applications, Bull Mater Sci 22; 1999: 495–501

[32]HasiakM,CiurzynskaWH,YamashiroY.Microstructure and some magnetic properties of amorphous and nanocrystalline Fe–Cu–Nb–Si–B alloys.MaterSciEngA293(1-2); 2000:261–266