بررسی سختی و تخلخل نانوکامپوزیت‌های Al-CNT و Al2024-CNT تولید‌ شده به دو روش‌ پرس سرد- تف‌جوشی و تف‌جوشی با جرقه پلاسما

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه علم و صنعت ایران

2 دانش آموخته کارشناسی - دانشگاه علم وصنعت ایران

3 دانش آموخته کارشناسی - دانشگاه علم و صنعت ایران

4 دانش آموخته دکتری - دانشگاه علم و صنعت ایران و مدرس جامعه ریخته گران ایران

چکیده

در تحقیق حاضر تخلخل نانوکامپوزیت‌های زمینه آلومینیم خالص و آلیاژ 2024 با مقاوم‌ساز نانوتیوب کربن و اثر متغیر‌هایی از تف‌جوشی مانند دما و نوع فرآیند ساخت نانو‌کامپوزیت بر خواص آن‌ها مورد بررسی قرار گرفته‌اند. بدین منظور ابتدا پودر کامپوزیت با استفاده از روش‌های متالورژی پودر پولک، توزیع ذرات از طریق امواج مافوق صوت و مخلوط‌کردن شیمیایی تهیه شد. سپس با استفاده از روش‌های استحکام‌بخشی تف‌جوشی با جرقه پلاسما و پرسسرد- تف‌جوشی، نانوکامپوزیت‌های نهایی ساخته شدند و در نهایت نمونه‌ها به‌منظور بهبود خواص مکانیکی تحت عملیات اکستروژن داغ قرار گرفتند. آزمایش‌های چگالی‌سنجی، سختی‌سنجی و متالوگرافی روی نمونه‌های مختلف انجام شد و مشخص گردید که روش SPS روش بهتری برای دستیابی به خواص مطلوب است و همچنین تخلخل نانوکامپوزیت‌ها تحت فرآیند اکستروژن داغ کاهش یافته و سختی آن‌ها افزایش می‌یابد. سختی و تخلخل نمونه Al-1.5%wt.CNT تولید شده با روش SPS که تحت فرآیند اکستروژن داغ قرار گرفته است به ترتیب HB45/62 و 1% محاسبه شدند. به منظور بررسی امکان تشکیل کاربید آلومینیم در فصل مشترک از آزمایش های طیف‌سنجی رامان و XRD استفاده شد که در هر دو آزمون پیک های مربوط به کاربید مشاهده نگردید

کلیدواژه‌ها


عنوان مقاله [English]

Investigation on hardness and porosity of Al-CNT and Al2024-CNT nanocomposites produced by cold press-sintering and spark plasma sintering (SPS) methods

نویسندگان [English]

  • Saeed Shabestari 1
  • Sanam Etemadi Maleki 2
  • Farshid Rikhtegar 4
1 Iran University of Science and Technology
2 B.Sc. graduated
4 Teacher at Iranian foundrymens society
چکیده [English]

In this paper, effects of porosity of pure Al and Al2024 matrix nanocomposite reinforced with carbon nanotubes, sintering parameters such as temperature and consolidation methods of nanocomposite on its properties have been studied. For this purpose, powder composite was prepared using flake powder metallurgy, dispersing particles with ultrasonic and chemical mixing. Consequently, nanocomposites were produced based on two strengthening procedures of spark plasma sintering and cold press-sintering. Finally, the samples were treated under hot extrusion in order to improve mechanical properties. Densitometry, hardness test and metallography were performed on final products. It was concluded that properties of nanocomposites produced by SPS were better than those manufactured by cold press-sintering and also porosity of nanocomposites, which were hot extruded, has been decreased and their hardness has been increased. Hardness and porosity of Al-1.5%wt.CNT, produced by SPS and hot extruded, were measured 62.45 HB and 1% respectively. In order to investigate the formation of aluminum carbide in the interface, Raman spectroscopy and XRD were used and no peak for carbide appeared in both of the experiments.

کلیدواژه‌ها [English]

  • Nanocomposite
  • Carbon Nanotube
  • Powder Metallurgy
  • Spark plasma sintering
  • cold pressing

 [1] Thostenson ET, Li C, Chou TW, Nanocomposites in Context, Composites Science and Technology 65 (2005) 491–516.

[2] Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes, Material Science and Engineering A 334 (2002) 173–178.

[3] Neubauer E, Kitzmantel M, Hulman M, Angerer P, Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes, Composites Science and Technology 70 (2010) 2228–2236.

[4] Torralba JM, Costa CE, Velasco F, P/M aluminum matrix composites: an overview, Materials Processing Technology 133 (2003) 203–206.

[5] Perez-Bustamante R, Estrada-Guel I, Amezaga-Madrid P, Miki-Yoshida M, Microstructural characterization of Al-MWCNT composites produced by mechanical milling and hot extrusion, Journal of Alloys and Compounds 495 (2010) 399–402.

[6] Kwon H, Estili M, Takagi K, Miyazaki T, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminium matrix composites, Carbon 47 (2009) 570–577.

[7] Rikhtegar F, Shabestari SG, Saghafian H, The homogenizing of carbon nanotube dispersion in aluminium matrixnanocomposite using flake powder metallurgy and ball milling methods, Powder Technology 280 (2015) 26–34.

[8] Esawi AMK, Morsi K, Sayed A, Gawad A, Fabrication and properties of dispersed carbon nanotube aluminum composites, Material Science and Engineering A 508 (2009)167–73.

[9] Deng CF, Wang DZ, Zhang XX, Li AB, Processing and properties of carbon nanotubes reinforced aluminum composites, Material Science and Engineering A 444 (2007) 138–145.

[10] Deng C, Zhang X,Wang D, Preparation and characterization of carbon nanotubes/aluminum matrix composites, Materials Letters 61 (2007) 1725–1728.

[11] Poirier D, Gauvin R, Structural characterization of a mechanically milled carbon nanotube/aluminum mixture, Composites: Part A 40 (2009) 1482–1489.

[12] Esawi AMK, Morsi K. Dispersion of carbon nanotubes (CNTs) in aluminum powder. Composites A 38 (2007) 646–650.

[13] Liao J, Ming-Jen T, Mixing of carbon nanotubes (CNTs) and aluminum powder for powder metallurgy use, Powder Technology 208 (2011) 42–48.

 

[14] Jiang L, Li Z, Fan G, Cao L, The use of flake powder metallurgy to produce carbon nanotube (CNT)- aluminum composites with a homogenous CNT distribution, Carbon 50 (2012) 1993-1998.

[15] Jiang L, Fan G, Li Z, Kai X, An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder, Carbon 49 (2011) 1965–1971.

 

 

[16] Jiang L, Zhiqiang L, Genlian F, Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes, ScriptaMaterialia 66 (2012) 331-334.

[17] Fuentes J, Rodrigue J, Herrera E, Processing of mechanically alloyed aluminum powder: A metallographic study, Materials Characterization 61(2010) 386–395.

[18] Esawi A, Morsi K, Sayed A, Taher M, Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites, Composites Science and Technology 70 (2010) 2237–2241.

[19] Rikhtegar F, Shabestari SG, Saghafian H, Synthesis of carbon nanotubes reinforced Al2024 matrix nanocomposite using flake powder metallurgy method, Metallurgical and Materials Transactions A 47 (2016), 6428-6437.

[20] Chen B, Li S, Imai H, Jia L, An approach for homogeneous carbon nanotube dispersion in Al matrix composites, Materials and Design 72 (2015) 1–8.

[21] Wang L, Choi H, Myoung J, Lee W, Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites, Carbon 47 (2009) 3427–3433.

[22] Arvind A, Srinivasa RB, Debrupa L, Carbon Nanotubes Reinforced Metal Matrix Composites, CRC Press Taylor & Francis Group, 2011.

[23] Kwon H, Park D, Silvain J, Investigation of carbon nanotube reinforced aluminum matrix composite materials, Composites Science and Technology 70 (2010) 546–550.

[24] Kwon H, Takamichi M, Kawasaki A, Leparoux M, Investigation of the interfacial phases formed between carbon nanotubes and aluminum in a bulk material, Materials Chemistry and Physics 138 (2013) 787-793.

[25] Tang J, Fan G, Li Z, Li X, Synthesis of carbon nanotube/aluminium composite powders by polymer pyrolysis chemical vapor deposition, Carbon 55 (2013) 202–208.

 

[26] H. Li, J. Kang, C. He, N. Zhao, Mechanical properties and interfacial analysis of aluminum matrix composites reinforced by carbon nanotubes with diverse structures, Materials Science & Engineering A 577(2013)120–124.

[27] P´erez-Bustamante R, Estrada-Guel I, Antunez-Flores W, Miki-Yoshida M, Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes, Journal of Alloys and Compounds 450 (2008) 323–326.

[28] Simões S, Viana F, Reis M, Vieira F, Influence of dispersion/mixture time on mechanical properties of Al–CNTs nanocomposites, Composite Structures 126 (2015) 114–122.

[29] Liao J, Tan M, Sridhar I, Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites, Materials and Design 31 (2010) 96–100.

[30] Morsi K, Esawi A, Lanka S, Sayed A, Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composite powders, Composites: Part A 41 (2010) 322–326.