کنترل رفتار سودوالاستیک، حافظه‌داری و بازیابی حرارتی در کامپوزیت دولایه آستنیتی-مارتنزیتی آلیاژ نایتینول به کمک شبیه‌سازی عددی و نتایج آزمایشگاهی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد دانشکده مهندسی متالورژی و مواد دانشگاه تهران

2 استاد دانشکده مهندسی متالورژی و مواد دانشگاه تهران

3 استادیار دانشکده مهندسی مکانیک، پردیس دانشکده های فنی، دانشگاه تهران، تهران، ایران

4 کارشناسی ارشد دانشکده مهندسی متالورژی و مواد دانشگاه تهران

5 هیئت علمی دانشکده مهندسی مواد دانشگاه تهران

چکیده

در این مقاله تاثیر نسبت ضخامت بر کنترل خواص کامپوزیت دولایه مارتنزیتی-آستنیتی ساخته شده از آلیاژ نایتینول توسط دو روش شبیه سازی عددی و ساخت نمونه مورد بررسی قرار گرفته است. برای این کار از نرم افزار آباکوس با مدل ساختاری ارائه شده توسط لاگوداس و همکاران استفاده شده است. در روش عددی علاوه بر بررسی تغییرات کرنش حافظه داری و سوپرالاستیک با پارامتر نسبت ضخامت، تاثیر درصد کرنش و تغییرات نسبت ضخامت بر روی سرعت بازیابی و میزان بازیابی کرنش مورد ارزیابی قرار گرفته شده است. به منظور بررسی صحت جواب های به دست آمده از روش شبیه سازی عددی، نتایج روش تجربی ساخت نمونه آورده شده است. نتایج دلالت بر تطبیق بالایی میان داده های حاصل از دو روش دارد، همچنین بررسی ها نشان میدهد که کامپوزیت دولایه با نسبت ضخامت های مختلف پتانسیل بالایی را در ارائه کردن دامنه ای از رفتار حافظه داری و سوپر الاستیسیته و همپنین پارامترهای تغییر شکل، از خود نشان می دهد که می تواند مورد توجه طراحان در زمینه های ساخت عملگرهای حافظه دار و همچنین دیگر اجزای ساخته شده از جنس آلیاژهای حافظه دار باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Control of shape memory, pseudoelastic and thermal recovery behavior of NiTi/NiTiCu bi-layer composite aided by FEM simulation

نویسندگان [English]

  • Milad Taghizadeh 1
  • Mahmoud Nili-Ahmadabadi 2
  • Mostafa Baghani 3
  • Mohammad hassan Malekoshoaraei 4
  • Mohammad Habibi Parsa 5
1 Masters Student, School of Metallurgy and Materials Engineering, University of Tehran
2 Professor, School of Metallurgy and Materials Engineering, University of Tehran
3 Assistant Professor at School of Mechanical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
4 Masters Student, School of Metallurgy and Materials Engineering, University of Tehran
5 Professor, School of Metallurgy and Materials Engineering, University of Tehran
چکیده [English]

In this paper the effects of thickness ratio on pseudoelastic, shape memory and thermal recovery properties of NiTi/NiTiCu bi-layer composite was investigated by using FEM simulation and experimental results. The NiTi/NiTiCu bi-layer composites with different thickness ratios designed and analyzed in ABAQUS software using SMA constitutive 3D model presented by Lagoudas et al. The pseudoelastic and shape memory strain values for different composites were studied and measured as well as thermal recovery strain and its rate. For validating the results of the FEM study NiTi/NiTiCu bi-layer composites were made and tensile tested. The results indicate a high correlation between two methods that leads to reduce the number of experiments to optimizing the composite behavior, also, considering the results of the FEM method, the NiTi/NiTiCu bi-layer composite shows high potential in adjusting pseudoelastic and shape memory properties and also deformation parameters such as stress and strain plateau with changing the thickness ratio that can be considered in SMA components design.

کلیدواژه‌ها [English]

  • Shape Memory Alloys
  • FEM study
  • Bi-layer composites
  • Strain thermal recovery

 

1.         Van Humbeeck J. Non-medical applications of shape memory alloys. Materials Science and Engineering: A. 1999;273:134-48.

2.         Shaw JA, Kyriakides S. On the nucleation and propagation of phase transformation fronts in a NiTi alloy. Acta materialia. 1997;45(2):683-700.

3.         Lagoudas DC. Shape memory alloys. Science and Business Media, LLC. 2008.

4.         Bellouard Y. Shape memory alloys for microsystems: A review from a material research perspective. Materials Science and Engineering: A. 2008;481:582-9.

5.         Tan G, Liu Y, Sittner P, Saunders M. Lüders-like deformation associated with stress-induced martensitic transformation in NiTi. Scripta Materialia. 2004;50(2):193-8.

6.         Shaw JA, Kyriakides S. Thermomechanical aspects of NiTi. Journal of the Mechanics and Physicsof Solids. 1995;43(8):1243-81.

7.         Mohri M, Nili-Ahmadabadi M. Phase transformation and structure of functionally graded Ni–Ti bi-layer thin films with two-way shape memory effect. Sensors and Actuators A: Physical. 2015;228:151-8.

8.         Mohri M, Nili‐Ahmadabadi M, Ivanisenko J. On the Super‐Elastic and Phase Transformation of a Novel Ni‐Rich/NiTiCu Bi‐Layer Thin Film. Advanced Engineering Materials. 2015;17(6):856-65.

9.         Mohri M, Nili-Ahmadabadi M, PouryazdanPanah M, Hahn H. Evaluation of structure and mechanical properties of Ni-rich NiTi/Kapton composite film. Materials Science and Engineering: A. 2016;668:13-9.

10.       Razali MF, Mahmud AS. Gradient deformation behavior of NiTi alloy by ageing treatment. Journal of Alloys and Compounds. 2015;618:182-6.

11.       Wang E, Tian Y, Wang Z, Jiao F, Guo C, Jiang F. A study of shape memory alloy NiTi fiber/plate reinforced (SMAFR/SMAPR) Ti-Al laminated composites. Journal of Alloys and Compounds. 2016.

12.       Shelyakov A, Sitnikov N, Borodako K, Menushenkov A, Fominski V. Effect of Laser Treatment on Shape Memory Properties of TiNiCu Alloy. Physics Procedia. 2015;73:108-13.

13.       Wang X, Bellouard Y, Vlassak J. Laser annealing of amorphous NiTi shape memory alloy thin films to locally induce shape memory properties. Acta Materialia. 2005;53(18):4955-61.

14.       Shelyakov A, Sitnikov N, Sheyfer D, Borodako K, Menushenkov A, Fominski VY. The formation of the two-way shape memory effect in rapidly quenched TiNiCu alloy under laser radiation. Smart materials and structures. 2015;24(11):115031.

15.       Pequegnat A, Panton B, Zhou YN, Khan MI. Local composition and microstructure control for multiple pseudoelastic plateau and hybrid self-biasing shape memory alloys. Materials & Design. 2016;92:802-13.

16.       Shiva S, Palani I, Paul C, Singh B. Laser annealing of laser additive–manufactured Ni-Ti structures: An experimental–numerical investigation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 2016:0954405416661582.

17.       Birnbaum A, Satoh G, Yao Y. Functionally grading the shape memory response in NiTi films: Laser irradiation. Journal of Applied Physics. 2009;106(4):043504.

18.       Abioye T, Farayibi P, Kinnel P, Clare A. Functionally graded Ni-Ti microstructures synthesised in process by directlaser metal deposition. The International Journal of Advanced Manufacturing Technology. 2015;79(5-8):843-50.

19.       Meng Q, Liu Y, Yang H, Nam T-h. Laser annealing of functionally graded NiTi thin plate. Scripta Materialia. 2011;65(12):1109-12.

20.       Meng Q, Liu Y, Yang H, Shariat BS, Nam T-h. Functionally graded NiTi strips prepared by laser surface anneal. Acta Materialia. 2012;60(4):1658-68.

21.       Mohri M, Nili-Ahmadabadi M, Ivanisenko J, Schwaiger R, Hahn H, Chakravadhanula VSK. Microstructure and mechanical behavior of a shape memory Ni–Ti bi-layer thin film. Thin Solid Films. 2015;583:245-54.

22.       Malekoshoaraei MH. Evaloation of Shape memory and Superelastic Behaviour of NiTi bi-layer Composite: University of Tehran; 2015.

23.       Mohri M, Nili-Ahmadabadi M, Flege S. Diffusion evaluation of Cu in NiTi Bi-layer thin film interface. Journal of Alloys and Compounds. 2014;594:87-92.

24.       Malekoshoaraie MH, Nili-Ahmadabadi M. Evaluation of shape memory behaviour of NiTi bi-layer composite.  The International Conference of Materials Chain: From Discovery to Production2016.

25.       Auricchio F, Taylor RL, Lubliner J. Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. Computer methods in applied mechanics and engineering. 1997;146(3-4):281-312.

26.       Lagoudas DC. Shape memory alloys: modeling and engineering applications: Springer Science & Business Media; 2008.

27.       Standard A. E9-09. Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature ASTM International. 2009.

28.       Otsuka K, Shimizu K. Pseudoelasticity and shape memory effects in alloys. International Metals Reviews. 1986;31(1):93-114.

29.       ملک الشعرایی محمد حسن. بررسی رفتار حافظه داری و سوپرالاستیک کامپوزیت دولایه آلیاژ نیکل-تیتانیوم: دانشگاه تهران۱۳۹۴.

30.       Tadayyon SM, Yoshinari O, Tanaka K. Auger electron spectroscopy and X-ray diffraction study of interdiffusion and solid state amorphization of Ni/Ti multilayers. Japanese journal of applied physics. 1992;31(7R):2226.

31.       Liu Y, Xie Z, Van Humbeeck J, Delaey L. Asymmetry of stress–strain curves under tension and compression for NiTi shape memory alloys. Acta Materialia. 1998;46(12):4325-38.