بهبود خواص مکانیکی آلیاژهای Al-Ni-Fe با بهره گیری از فرایند فرآوری اغتشاشی اصطکاکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی مواد و متالورژی، دانشگاه بین المللی امام خمینی (ره)، قزوین

2 هیئت علمی گروه مهندسی مواد و متالورژی دانشگاه بین المللی امام خمینی

3 گروه مهندسی مواد و متالورژی، دانشگاه بین المللی امام خمینی (ره)

چکیده

فرآوری اغتشاشی اصطکاکی به‌عنوان یک فرآیند حالت جامد، روشی نسبتا جدید و موثر برای اصلاح ریز ساختار و خواص فلزات و آلیاژها از طریق تغییر شکل پلاستیک شدید نواحی سطحی است. در تحقیق حاضر تاثیر فرآوری اغتشاشی اصطکاکی (سرعت چرخش rpm 2000-600 و سرعت پیش‌روی mm/min 25) بر ریزساختار و خواص مکانیکی آلیاژهای Al-0.9Ni-Fe مورد بررسی قرار گرفته است. بر اساس نتایج حاصله، تغییر شکل پلاستیک شدید ناشی از فرآوری اغتشاشی، ضمن کاهش قابل توجه ابعاد ذرات بین فلزی، موجب توزیع همگن این ذرات در زمینه شده و عیوب ناشی از فرآیند ریخته‌گری را تا حد قابل توجهی کاهش می‌دهد. در نتیجه‌ی این تغییرات ساختاری، خواص مکانیکی آلیاژ پایه به میزان قابل توجهی بهبود می‌یابد به‌گونه‌ای که استحکام کششی و درصد ازدیاد طول آن به ترتیب حدود 40 و 205 درصد و چقرمگی آن حدود 205 درصد افزایش می یابد ضمن آنکه سختی آلیاژ فرآوری شده حدود 24 درصد بیش از آلیاژ پایه است.

کلیدواژه‌ها


عنوان مقاله [English]

Improving the mechanical properties of Al-Ni-Fe alloys through friction stir processing

نویسندگان [English]

  • Mojtaba Fekri soostani 1
  • Reza Taghiabadi 2
  • Mostafa Jafarzadegan 3
1 Imam Khomeini International University, Department of materials and metallurgy
2 Department of Materials and Metallurgy, Imam Khomeini International University, Qazvin, I.R. IRAN
3 Imam Khomeini International University, Department of materials and metallurgy
چکیده [English]

Friction stir processing as a relatively new and effective solid-state process is used for surface modification of metals and alloys in order to modify their microstructure and properties. In this study, the effect of friction stir processing on the microstructure and mechanical properties of an Al-0.9Ni-Fe alloy was investigated. The process was performed under the rotational speeds of 600-2000 rpm and the traverse speed of 25 mm/min. According to the results, the severe surface plastic deformation refined the intermetallic compounds present in the microstructure, improved their distribution within the matrix, and substantially reduced the amount of casting defects. As a result of these microstructural variations, the tensile strength and percent elongation of the base alloy are increased by almost 40 and 205%, respectively. The fracture toughness is also improved by 205%. It was also found that the hardness of processed alloy is about 24% higher as compared to the base alloy.

کلیدواژه‌ها [English]

  • Al-Ni-Fe
  • Friction stir processing
  • Mechanical properties
  • Intermetallic
  • Aluminum
 
[1]        F. Průša, D. Vojtěch, A. Michalcová, and I. Marek, “Mechanical properties and thermal stability of Al–Fe–Ni alloys prepared by centrifugal atomisation and hot extrusion”,  Materials Science and Engineering: A, Vol. 603A, pp. 141-149, 2014.
[2]        B. Grushko, and T. Velikanova, “Formation of quasiperiodic and related periodic intermetallics in alloy systems of aluminum with transition metals”, Calphad, Vol. 31(2), pp. 217-232, 2007.
[3]        X. Fang, G. Shao, Y.Q. Liu, and Z. Fan, “Effects of intensive forced melt convection on the mechanical properties of Fe containing Al–Si based alloys”, Materials Science and Engineering: A, Vol. 445, pp. 65-72, 2007.
[4]        S. Mohan, and S. Srivastava, “Surface behaviour of as-Cast Al–Fe intermetallic composites”, Tribology Letters, Vol. 22(1), pp. 45-51, 2006.
[5]        L. Ke, C. Huang, L. Xing, and K. Huang, “Al–Ni intermetallic composites produced in situ by friction stir processing”, Journal of Alloys and Compounds, Vol. 503(2), pp. 494-499, 2010.
[6]        I.S. Lee, P.W. Kao, and N.J. Ho, “Microstructure and mechanical properties of Al–Fe in situ nanocomposite produced by friction stir processing”,  Intermetallics, Vol. 16(9), pp. 1104-1108, 2008.
[7]        Z.Y. Ma, S.R. Sharma, and R.S. Mishra, “Microstructural modification of as-cast Al-Si-Mg alloy by friction stir processing”, Metallurgical and Materials Transactions A, Vol. 37A(11), pp. 3323-3336, 2006.
[8]        Y. Estrin, and A. Vinogradov, “Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: an overview”, International Journal of Fatigue, Vol. 32(6), pp. 898-907, 2010.
[9]        X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, and R.Z. Valiev, “Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena”, Materials Science and Engineering: A, Vol. 540A, pp. 1-12, 2010.
[10]    R.S. Mishra, and Z.Y. Ma, “Friction stir welding and processing”, Materials Science and Engineering: R: Reports, Vol. 50R(1), pp. 1-78, 2005.
[11]    R.S. Mishra, P.S. De, and N. Kumar, “Friction stir processing”, Springer International Publishing, Cham, pp. 259-296, 2014.
[12]    K.B. Nie, K.K. Deng, X.J. Wang, F.J. Xu, K. Wu, and M.Y. Zheng, “Multidirectional forging of AZ91 magnesium alloy and its effects on microstructures and mechanical properties”, Materials Science and Engineering: A, Vol. 624A, pp. 157-168, 2015.
[13]    H. Ye, “An overview of the development of Al-Si-alloy based material for engine applications”, Journal of Materials Engineering and Performance, Vol. 12(3), pp. 288-297, 2003.
[14]    M. Shakiba, N. Parson, and X.G. Chen, “Hot deformation behavior and rate-controlling mechanism in dilute Al–Fe–Si alloys with minor additions of Mn and Cu”, Materials Science and Engineering: A, Vol. 636A, pp. 572-581, 2015.
[15]    Y. Lv, Y. Ding, Y. Han, L.C. Zhang, L. Wang, W. and Lu, “Strengthening mechanism of friction stir processed and post heat treated NiAl bronze alloy: Effect of rotation rates”, Materials Science and Engineering: A, Vol. 685A, pp. 439-446, 2017.
[16]    C. Chang, C. Lee, and J. Huang, “Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys”, Scripta Materialia, Vol. 51(6), pp. 509-514, 2004.
[17]    M.H. Razmpoosh, A. Zarei-Hanzaki, and A. Imandoust, “Effect of the Zener–Hollomon parameter on the microstructure evolution of dual phase TWIP steel subjected to friction stir processing”, Materials Science and Engineering A, Vol. 638A, pp. 15-19, 2015.
[18]    T. Uesugi, H. Iwami, Y. Takigawa, and K. Higashi, “Effect of Solute Elements on Grain Refinement during Friction Stir Processing in High-Purity Aluminum”, Materials Science Forum, Vol. 838-839, pp. 116-121, 2016.
[19]    T. Morishige, T. Hirata, M. Tsujikawa, and K. Higashi, “Comprehensive analysis of minimum grain size in pure aluminum using friction stir processing”, Materials Letters, Vol. 64(17), pp. 1905-1908, 2010.
[20]    W. Arbegast, E. Coletta, and Z. Li, “Characterization of Friction Stir Weld Defect Types”, TMS Annual Spring Meeting, Feb, 2001, New Orleans.
[21]    S.M. Aktarer, D.M. Sekban, O. Saray, T. Kucukomeroglu, Z.Y. Ma, and G. Purcek, “Effect of two-pass friction stir processing on the microstructure and mechanical properties of as-cast binary Al–12Si alloy”, Materials Science and Engineering A, Vol. 636A, pp. 311-319, 2015.
[22]  میرباقری، م.ح.، والی، ح. و سلطانی ح.، "خواص مکانیکی فوم فلزی A356 غنی شده با مس و اثر عملیات پیرسازی بر آن، نشریه مهندسی متالورژی، شماره 53، 49، 1393.