خواص خوردگی دمای بالای پوشش های آلومیناید آهن تولید شده به روش دو مرحله ای روی فولاد ساده کربنی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری/ دانشگاه شهید باهنر کرمان

2 استاد بخش مهندسی مواد و متالورژی، دانشگاه شهید باهنر کرمان، بلوار جمهوری اسلامی، کرمان، ایران

3 دانشیار گروه مهندسی مواد ومتالورژی دانشگاه تربیت مدرس

چکیده

رفتار خوردگی پوشش آلومیناید آهن Fe3Al حاصل از عملیات آلیاژسازی سطحی با استفاده از روش TIG در جریان 40 آمپر روی فولاد ساده کربنی در محیط هوا مورد مطالعه قرار گرفت. آزمایش خوردگی در دماهای 700 و °C 900 و زمان های 4 تا 100 ساعت انجام شد. میکروسکوپ الکترونی روبشی و تفرق اشعه ایکس برای بررسی میکروساختار پوشش و رفتار اکسیداسیون آن مورد استفاده قرار گرفتند. داده های مربوط به افزایش وزن نمونه ها مورد تحلیل قرار گرفت و بررسی ثوابت نرخ خوردگی حاکی از برقراری قانون پارابولیکی خوردگی بود. نتایج بررسی ها روی فازهای حاصل از خوردگی نشان داد که در مراحل اولیه فاز اکسید آلومینیم θ تشکیل شده اما در زمان های طولانی تر با آلومینای پایدار α جایگزین می شود. در تصاویر SEM مشخص است که در دماها و زمان های پایین تر که فاز θ پایدار است پدیده پوسته ای شدن بیشتر مشاهده می شود اما با غلبه ی فاز α این پدیده کاهش می یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Hot corrosion properties of iron aluminide coatings produced via a two stages process on plain carbon steel

نویسندگان [English]

  • Peiman Omranian Mohammadi 1
  • ramin raiszadeh 2
  • Hmidreza Shahverdi 3
2 Professor of Metallurgy and Materials Science, Dept. of Metallurgy and Materials Science, School of Engineering, Shahid Bahonar University of Kerman, Jomhoori Eslami Blvd., Kerman, Iran
3 Associate Professor of Metallurgy and Materials science, Tarbiat Modares University, Jalal Al Ahmad Blvd, Tehran, Iran
چکیده [English]

The isothermal high temperature corrosion behavior of an Fe3Al coating coated on plain carbon steel through tungsten inert gas (TIG) surface alloying with current of 40A was studied in the atmosphere of air. The specimens were tested at 700 and 900 °C for 4–100 h. SEM, EDS and XRD analyses were utilized to study the oxidation behavior of the iron aluminide intermetallic coating. The weight gain data determined a parabolic rate law. The results also revealed that the initial scale formed on the coating was predominately θ-Al2O3 which was substituted by α-Al2O3 after about 64 hours. The SEM observation and XRD results illustrated that at shorted times, when the θ phase was stable, spalling was more usual while with the increase in the amount of the α phase the spalling decreased significantly. The EDS results confirmed the presence of aluminum oxide at shorted times and iron oxide at longer times.

کلیدواژه‌ها [English]

  • TIG surface alloying
  • high temperature oxidation
  • Fe3Al coating
 
1.         Fan P, Riddle E, Fang ZZ, Sohn HY. Iron aluminide coatings by an in-situ reaction process. Surface and Coatings Technology. 2008;202(24):6090-4.
2.         Emami M, Shahverdi HR, Hayashi S, Torkamany MJ. A Combined Hot Dip Aluminizing/Laser Alloying Treatment to Produce Iron-Rich Aluminides on Alloy Steel. Metallurgical and Materials Transactions A. 2013;44(7):3176-84.
3.         Cheng W-J, Wang C-J. Characterization of intermetallic layer formation in aluminide/nickel duplex coating on mild steel. Materials Characterization. 2012;69:63-70.
4.         Corbin SF, Toyserkani E, Khajepour A. Cladding of an Fe-aluminide coating on mild steel using pulsed laser assisted powder deposition. Materials Science and Engineering: A. 2003;354(1–2):48-57.
5.         Zhang Y, Pint BA, Cooley KM, Haynes JA. Effect of nitrogen on the formation and oxidation behavior of iron aluminide coatings. Surface and Coatings Technology. 2005;200(5–6):1231-5.
6.         Zhang Y, Pint BA, Garner GW, Cooley KM, Haynes JA. Effect of cycle length on the oxidation performance of iron aluminide coatings. Surface and Coatings Technology. 2004;188-189:35-40.
7.         Babu N, Balasubramaniam R, Ghosh A. High-temperature oxidation of Fe3Al-based iron aluminides in oxygen. Corrosion Science. 2001;43(12):2239-54.
8.         Dang Ngoc Chan C, Huvier C, Dinhut JF. High temperature corrosion of some B2 iron aluminides. Intermetallics. 2001;9(9):817-26.
9.         Guilemany JM, Cinca N, Dosta S, Lima CRC. High-temperature oxidation of Fe40Al coatings obtained by HVOF thermal spray. Intermetallics. 2007;15(10):1384-94.
10.       Lang F, Yu Z, Gedevanishvili S, Deevi SC, Narita T. Isothermal oxidation behavior of a sheet alloy of Fe–40at.%Al at temperatures between 1073 and 1473 K. Intermetallics. 2003;11(7):697-705.
11.       Montealegre MA, González-Carrasco JL, Muñoz-Morris MA. Oxidation behaviour of Fe40Al alloy strip. Intermetallics. 2001;9(6):487-92.
12.       Rao VS. High temperature oxidation behaviour of Fe–Al–C alloys: an overview. Materials Science and Engineering: A. 2004;364(1-2):232-9.
13.       Christoglou C, Voudouris N, Angelopoulos GN. Formation and modelling of aluminide coatings on iron by a fluidised bed CVD process. Surface and Coatings Technology. 2002;155(1):51-8.
14.       Pérez FJ, Pedraza F, Hierro MP, Hou PY. Adhesion properties of aluminide coatings deposited via CVD in fluidised bed reactors (CVD-FBR) on AISI 304 stainless steel. Surface and Coatings Technology. 2000;133–134:338-43.
15.       Wei S-c, Xu B-s, Wang H-d, Jin G, Lv H. Comparison on corrosion-resistance performance of electro-thermal explosion plasma spraying FeAl-based coatings. Surface and Coatings Technology. 2007;201(9–11):5294-7.
16.       Lin M-B, Wang C-J, Volinsky AA. Isothermal and thermal cycling oxidation of hot-dip aluminide coating on flake/spheroidal graphite cast iron. Surface and Coatings Technology. 2011;206(7):1595-9.
17.       Wang YQ, Zhang Y, Wilson DA. Formation of Aluminide Coatings on Ferritic–Martensitic Steels by a Low-Temperature Pack Cementation Process. Surface and Coatings Technology. 2010;204(16-17):2737-44.
18.       Sohi MH, Ebrahimi M, Ghasemi HM, Shahripour A. Microstructural study of surface melted and chromium surface alloyed ductile iron. Applied Surface Science. 2012;258(19):7348-53.
19.       Buytoz S, Ulutan M. In situ synthesis of SiC reinforced MMC surface on AISI 304 stainless steel by TIG surface alloying. Surface and Coatings Technology. 2006;200(12-13):3698-704.
20.       Amirsadeghi A, Sohi MH. Comparison of the influence of molybdenum and chromium TIG surface alloying on the microstructure, hardness and wear resistance of ADI. Journal of Materials Processing Technology. 2008;201(1-3):673-7.
21.       Eroğlu M, Özdemir N. Tungsten-inert gas surface alloying of a low carbon steel. Surface and Coatings Technology. 2002;154(2–3):209-17.
22.       Çelik ON, Ulutan M, Gaşan H, Er Ü, Buytoz S. Effects of graphite content on the microstructure and wear properties of an AISI 8620 steel surface modified by tungsten inert gas (TIG). Surface and Coatings Technology. 2011;206(6):1423-9.
23.       Tomaszewicz P, Wallwork GR. Observations of nodule growth during the oxidation of pure binary iron-aluminum alloys. Oxidation of Metals. 1983;19(5):165-85.
24.       Pint BA, Leibowitz J, Devan JH. The Effect of an Oxide Dispersion on the Critical Al Content in Fe-Al Alloys. Oxidation of Metals. 1999;51(1):181-97.
25.       Natesan K. Corrosion performance of iron aluminides in mixed-oxidant environments. Materials Science and Engineering: A. 1998;258(1–2):126-34.