سنتز پودرآلیاژ حافظه‌دار Cu-12Al-4Ni حاوی بور به روش آلیاژسازی مکانیکی و بررسی تغییرات چگالی و تخلخل نمونه بالک در حین تولید

نوع مقاله : مقاله پژوهشی

نویسندگان

1 فارغ التحصیل دانشگاه تهران

2 دانشکده مهندسی متالورژی و مواد پردیس دانشکده‌های فنی دانشگاه تهران

3 استادیار دانشگاه صنعتی همدان

چکیده

در این پژوهش پودر آلیاژ حافظه‌دار Cu-12wt%Al-4wt%Ni با عنصر آلیاژی بور و بدون آن به روش آلیاژسازی مکانیکی تهیه و سپس پودر حاصل به روش پرس-سینتر و متعاقب آن نورد-عملیات حرارتی تبدیل به نمونه بالک شد وچگالی و مقدار تخلخل نمونه ها مورد بررسی قرار گرفت. در این راستا، تأثیر زمان آسیاکاری بر روی تغییرات فازی، اندازه کریستالیت و کرنش شبکه‌ای مطالعه گردید. نتایج نشان داد که بعد از 20 ساعت آسیاکاری با سرعت 250 دور بر دقیقه و نسبت وزنی گلوله به پودر 20:1، پیک‌های مربوط به عناصر خالص از بین رفته و محلول جامدی با ساختار FCC و پارامتر شبکه‌ای بسیار نزدیک به پارامتر شبکه مس تولید می‌شود. ریزساختار و مورفولوژی پودرهای آسیاکاری شده و نمونه‌ی نهایی توسط میکروسکوپ الکترونی و نوری مورد مطالعه قرار گرفتند. مشاهده گردید که افزودن بور باعـث ریز شدن ذرات پس از آسیاکاری می گردد. نتایج نشان دادند که با افزایش زمان آسیاکاری، چگالی خام قطعه پس از پرس- سینتر کاهش ولی چگالی نهایی پس از نورد-عملیات حرارتی افزایش پیدا می کند. همچنین نشان داده شد که افزودن بور به مخلوط پودری موجب توزیع یکنواخت‌تر تخلخل ها پس از مرحله نورد- عملیات حرارتی می گردد.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesis of Boron Containing Cu-12Al-4Ni Memory Alloy powder by Using Mechanical Alloying Method and Investigating the Changes of the Density and Porosity in Bulk Samples During production

نویسنده [English]

  • Shahram Raygan 2
1
2 Tehran University
3
چکیده [English]

In this research Cu-12wt%Al-4wt%Ni shape memory alloy powder with and without addition of boron as alloying element was produced by using mechanical alloying method. Bulk samples were produced from the powder by press-sinter and subsequently rolling-heat treatment processes. The density and the amount of porosity of the samples were measured, subsequently. The effect of milling time on phase changes in produced powder, size of crystallites and lattice strain was also investigated. Results showed that after 20h of milling with rotating speed of 250 rpm and ball to powder mass ratio of 20:1, peaks of pure elements disappear and solid solution with FCC structure and lattice parameter close to that of copper forms. Morphology of milled powder and microstructure of bulk samples were studied by optical microscope and scanning electro-microscope. It was observed that adding boron lead to decrease in the size of particles after milling. Results showed that the density of samples after press-sinter processes decreases. However, the final density increased after rolling-heat treatment processes. It was also shown that adding boron to the powder mixture results in more homogenous distribution of porosities after rolling-heat treatment processes.

کلیدواژه‌ها [English]

  • Synthesis
  • Mechanical alloying
  • Shape memory alloy
  • Cu-12Al-4Ni
  • Boron
[1] D. C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications,    Springer, USA, 2007, pp. 1-117.
[2] S. K. Vajpai, R. K. Dube, M. Sharma, “Studies on the mechanism of the structural evolution in Cu–Al–Ni elemental powder mixture during high energy ball milling”, Journal of Materials Science, 2009, Vol. 44, pp. 4334-4341.
[3] S. Pourkhorshidi, N. Parvin, M. S. Kenevisi, M. Naeimi, H. Ebrahimnia Khaniki, “A study on the microstructure and properties of Cu-based shape memory alloy produced by hot extrusion of mechanically alloyed powders”, Materials Science and Engineering A, 2012, Vol. 556, pp. 658-663.
[4] M. Sharma, S. K. Vajpai, R. K. Dube, “Processing and characterization of Cu-Al-Ni shape memory alloy strips prepared from elemental powders via a novel powder metallurgy route”, Metallurgical and Materials Transactions A, 2010, Vol. 41, pp. 2905-2913.
[5] ASM metals handbook, Vol. 15, 10th ed., ASM international, USA, 1992, PP. 171-265.
[6] V. Sampath, “Studies on the effect of grain refinement and thermal processing on shape memory characteristics of Cu–Al–Ni alloys”, Smart Materials Structure, 2005, Vol. 14, pp. 253–260.
[7]  Z. Xiao, Z. Li, M. Fang, M. Luo, S. Gong, N. Tang, “Structure evolution of Cu-based shape memory powder during  mechanical alloying”, Transactions of Nonferrous Metals Society China, 2007, Vol. 17, pp. 1422-1427.
[8]  M. Izadinia, K. Dehghani, “Structure and properties of nanostructured Cu-13.2Al-5.1Ni shape memory alloy produced by melt spinning”, Transactions of Nonferrous Metals Society China, 2011, Vol. 21, pp. 2037-2043.
[9]  K. Y. Wang, T. D. Shen, “Structural evolutions of NiTi systems caused by mechanical alloying in different atmospheres”, Materials Science and Engineering A, 1994, Vol. 179-180, pp. 215-219.
[10]  Darel E. Hodgson, Ming H. Wu, Robert J. Biermann, Shape Memory Application Inc., Memory Technologies, Harrison Alloys, 1999.
[11]  T. Minemura, H. Andoh, I. ikuta, “Reversible colour change in Cu-Al-Ni alloy ribbon associated with phase transformation”, Journal of Materials science, 1987, Vol. 22, pp. 932-936.
[12]  D. E. Hodgson, M. H. Wu, R. J. Biermann, Shape Memory Alloy, ASM Handbook, 10th ed., Metals Park, Ohio, 1990, Vol. 2, pp. 897-902.
[13] V. Novak, P. Sittner, D. Vokoum , N. Zarubova, “On the anisotropy of martensitic transformations in Cu-based alloys”, Materials Science and Engineering A, 1999, Vol. 273-275, pp. 280-285.
[14]  H. H. Kuo, W. H. Wang, Y. F. Hsu, “Microstructural characterization of precipitates in Cu-10Al-0.8Be shape memory alloy”, Materials Science and Engineering A, 2006, Vol. 430, pp. 292-300.
[15]  C. Picornel, R. Rapacioli, J. Pons, E. Cesari, “Two way shape memory effect in Cu-Al-Ni single crystal”, Materials Science and Engineering A, 1999, Vol. 273-275, pp.605-609.
[16]  S. Montecinos, A. Cuneberti, A. Sepulveded, “Grain size and pseudoelastic behaviour of a Cu-Al-Be alloy”, Materials Characterization, 2008, Vol. 59, pp. 117-123.
[17]  J. Font, E. Cesari, J. Muntasell, J. Pons, “Thermomechanical cycling in Cu-Al-Ni based melt-spun shape memory ribbons”, Materials Science and Engineering A, 2003, Vol. 354, pp. 207-211.
[18] C.Y. Chung, C.W.H. Lam, “Cu-based shape memory alloys with enhanced thermal stability and mechanical properties”, Materials Science and Engineering A, 1999, Vol. 273-275, pp. 622-624.
[19] S.K. Vajpai, R.K. Dube, P. Chatterjee, S. Sangal, “A novel powder metallurgy approach to prepare fine-grained Cu-Al-Ni shape memory alloy strips from elemental”, Metallurgical and Materials Transaction A, 2012, Vol. 43, pp. 2484-2499.
[20] S. M. Tang, C. Y. Chung, W. G. Liu, “Preparation of Cu-Al-Ni based shape memory alloys by mechanical alloying and powder metallurgy method”, Journal of Minerals Processing Technology, 1997, Vol. 63, pp. 307-312.
[21] S.K. Vajpai, R.K. Dube, S. Sangal, “Microstructure  and  properties  of  Cu–Al–Ni  shape  memory  alloy  strips  prepared via  hot  densification  rolling  of  argon  atomized  powder  preforms”, Materials Science and Engineering A, 2011, Vol. 529, pp. 378-387.
[22] A. Ibarra, P.P. Rodr´ıguez, V. Recarte, J.I. Pérez-Landazábal, M.L. Nó, J. San Juan, “Internal friction behaviour during martensitic transformation in shape memory alloys processed by powder metallurgy”,Materials Science and Engineering A, 2004,Vol. 370, pp. 492-496.
[23] M. Silvaa, S. Lima, “Evaluation of mechanical alloying to obtain Cu-Al-Nb shape memory alloy”, Materials Research, 2005, Vol. 8, No. 2, pp. 169-172.
[24]  Z. Li, Z.Y. Pan, N. Tang, Y.B. Jiang, N. Liu, M. Fang, F. Zheng, “Cu–Al–Ni–Mn shape memory alloy processed by mechanical alloying and powder metallurgy”, Materials Science and Engineering A, 2006, Vol. 417, pp. 225-229.
[25] Z. Xiao, Z. Li, M. Fang, S. Xiong, X. Sheng, M. Zhou, “Effect of processing of mechanical alloying and powder metallurgy on microstructure and properties of Cu–Al–Ni–Mn alloy”, Materials Science and Engineering A, 2008, Vol. 488, pp. 266-272.
[26] R. Amini, S.M.M. Mousavizad, H. Abdollahpour, M. Ghaffari, M. Alizadeh, A. K. Okyay, “Structural and microstructural phase evolution during mechano-synthesis of nanocrystalline/amorphous CuAlMn alloy powders”, Advanced Powder Technology, 2013, Vol. 579, pp. 1-6.
[27] A. Ibarra, J. San Juan, E.H. Bocanegra, M.L. No, “Thermo-mechanical characterization of Cu–Al–Ni shape memory alloys elaborated by powder metallurgy”, Materials Science and Engineering A, 2006, Vol. 438–440,pp. 782–786.
[28] U. Sari, “Influences of 2.5 wt% Mn addition on the microstructure and mechanical properties of Cu-Al-Ni shape memory alloys”, International Journal of Minerals, Metallurgy and Materials, 2010, Vol. 17, pp. 192-198.
[29]  K.  Enami, N. Takimoto, S. Nenno, “Effect of the vanadium addition on the grain size and mechanical properties of the Copper-Aluminium-Zinc shape memory alloys”, Journal de Physique, 1982, Vol. 4, pp. 773-778.
[30]  J.S.Lee, C.M.Wayman, “Grain refinement of a Cu-Al-Ni shape memory alloy by Ti and Zr addition”, Transactions of Japan Institute of Metals, 1986, Vol. 27, No. 8, 584-591.
[31]  M. A. Morris, “High temperature properties of ductile Cu-Al-Ni shape  memory  alloys with boron additions”, Acta  Metallurgica and Materiala, 1992, Vol. 40, No. 7, pp. 1573-1586.
[32]  Y. S. Han, Y. G. Kim, “The effects of boron and aging on mechanical properties and martensitic temperatures in Cu-Zn-Al shape memory”, Scripta Metallurgica, 1987, Vol. 21, pp. 947-952.
[33]  S.M.Tuomine, R.J.Biermann, “Shape memory wires”, Journal of Metals, 1988, pp.32-35.
[34]  W. S. Yang, D. E. Mikkola, “Ductilization of Ti-Ni-Pd shape memory alloys with boron additions”, Scripta Metallurgica et Materialia, 1993, Vol. 28, pp. 161-165.
[35] Y. Suzuki,Y. Xu, S. Morito, K. Otsuka, K. Mitose, “Effects of boron addition on microstructure and mechanical properties of Ti-Td-Ni high temperature shape memory alloys”, Materials Letters, 1998, Vol. 36, pp. 85-94.
]36[  ا. عطائی، س. شیبانی، غ. خیاطی، س. اسدی کوهنجانی، آلیاژسازی و فعال­سازی مکانیکی فناوری تهیه نانومواد، سازمان انتشارات جهاد دانشگاهی شعبه واحد تهران، تهران، 1385، 140-149.
[37]  L. Lu, M. O. Lai, Mechanical alloying, Kluwer Academic Publication, Boston, 1998, pp. 15-49.