تاثیر فرآیند تغییرشکل پلاستیک شدید نورد تکرارشونده با غلتک‌های انحناءدار و صاف (RCSR) بر ریزساختار فولاد زنگ نزن ۳۰۴ در دمای بالای Md30

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشکده مهدسی متالورژی و مواد. دانشکده فنی،دانشگاهت تهران، تهران،ایران

2 استاد دانشکده مهندسی متالورژی و مواد دانشگاه تهران

3 دکترای دانشکده مهندسی متالورژی و مواد دانشگاه تهران

چکیده

هدف از این پژوهش بررسی تاثیر روش تغییرشکل پلاستیک شدید نورد تکرارشونده با غلتک‌های صاف و انحناءدار (RCSR) و نیز تاثیر عملیات حرارتی پس از آن بر ریزساختار و خواص مکانیکی فولاد زنگ‌نزن ۳۰۴ است. در این پژوهش، ابتدا روش RCSR در دمای °C ۲۰۰ (در دمای بالای Md30)، به منظور تشکیل دانسیته بالایی از نابجایی‌ها و دوقلویی‌های مکانیکی در فاز آستنیت و جلوگیری از تشکیل فاز مارتنزیت، به نمونه فولاد زنگ‌نزن ۳۰۴ اعمال شده است. سپس، به منظور دست یافتن به ریزساختار ریزدانه، نمونه تغییرشکل یافته تحت عملیات حرارتی آنیل قرار گرفته است. در ادامه به منظور مشخص نمودن دمای شروع و پایان تبلورمجدد نمونه تغییرشکل یافته، از تست دیلاتومتری استفاده شده است. در نهایت نمونه‌ها توسط میکروسکوپ نوری و الکترونی روبشی، تست‌های کشش و میکروسختی مورد مطالعه قرار گرفته‌اند. نتایج نشان می‌دهند که با افزایش تعداد سیکل‌های فرآیند RCSR، دوقلویی‌های مکانیکی بیشتری تشکیل شده و سختی و استحکام تسلیم نمونه‌ها افزایش یافته است.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of "Repetitive Corrugation and Straightening by Rolling" (RCSR) Process above Md30 temperature on the Microstructure of 304 stainless steel

نویسندگان [English]

  • shima ahmadzadeh salout 1
  • Mahmoud Nili-Ahmadabadi 2
  • Hassan Shirazi 3
1 faculty of metallurgy and material engineering,university of Tehran,Tehran, Iran
2 Professor, School of Metallurgy and Materials Engineering, University of Tehran
3 PhD, School of Metallurgy and Materials Engineering, University of Tehran
چکیده [English]

The current research is an attempt to study the effect of a novel severe plastic deformation technique called "repetitive corrugation and straightening by rolling" (RCSR) and subsequent annealing on the microstructure and mechanical properties of AISI type 304 austenitic stainless steel. In this study, RCSR process was carried out at 200 °C on the 304 austenitic stainless steel (above Md30 temperature) in order to avoid the formation of martensite phase when a high density of dislocations was introduced into the austenite phase. Thereafter, annealing treatment was applied in order to refine the microstructure of 304 stainless steel. In order to determine the beginning and the end of recrystallization temperature of deformed samples, dilatometer tests were used. The specimens were examined by optical microscopy (OM), tensile and micro-hardness tests. The results indicate that by increasing the cycles of RCSR process, more mechanical twins are induced, the hardness and in particular, the yield stress of specimens have been increased.

کلیدواژه‌ها [English]

  • 304 stainless steel
  • severe plastic deformation
  • RCSR
 [1] A.F. Padilha, R.L. Plaut and P.R. Bios,’’ Annealing of cold-worked austenitic stainless steels’’, ISIJ Int. 43, 135–143, 2003.

[2] M. Moallemi, A. Kermanpur, A. Najafizadeh, A. Rezaee and H. Samaei Baghbadorani, ‘’ Formation of nano/ultrafine grain structure in a 201 stainless steel through the repetitive martensite thermomechanical treatment’’, Journal of Materials Letters, 89, 22–24, 2012.

[3] C.Y. Lee, C.S. Yoo, A. Kermanpur and Y.K. Lee, ‘’The effects of multi-cyclic thermomechanical treatment on the grain refinement and tensile properties of a metastable austenitic steel’’, Journal of Alloys and Compounds, 583, 357–360, 2014.

[4] P. Asghari-Rad, M. Nili-Ahmadabadi, H. Shirazi, S. Hossein Nedjad and S. Koldorf, ‘’A significant improvement in the mechanical properties of AISI 304 stainless steel by acombined RCSR and annealing process’’, Advanced Engineering Materials, 2016 (10.1002/adem.201600663).

[5] Y. Ma, J.E. Jin and Y.K. Lee, ‘’A repetitive thermomechanical process to produce nanocrystalline in a metastable austenitic steel’’, Journal of scripta materialia, 52, 1311–1315, 2005.

[6] A. Rezaee, A. Najafizadeh, A. Kermanpur and M. Moallemi, ‘’The influence of reversion annealing behavior on the formation of nanograined structure in AISI 201L austenitic stainless steel through martensite treatment’’, Journal of Materials and Design, 32, 4437–4442, 2011.

[7]F.J. Humphreys and M. Hatherly, ‘’Recrystallization and related annealing phenomena’’, second edition, 221-229, 2004.

[8]R.Z. Valier and T.G. Langdon, ‘’Principles of equal-channel angular pressing as a processing tool for grain refinement’’, Journal of Progress in Materials Science, 51, 881-981, 2006.

[9]A.P. Zhilyaev and T.G. Langdon, ‘’Using high-pressure torsion for metal processing: Fundamentals and applications’’, Journal of Progress in Materials Science, 53, 893-979, 2008.

[10] N. Tsuji, Y. Saito, S.H. Lee, and Y. Minamino, ‘’ARB (accumulative roll-bonding) and other new techniques to produce bulk ultrafine grained materials’’, Journal of Advanced Engineering Materials, 5, 338-344, 2003.

[11] S.C. Yoon, A. Krishnaiah, U. Chakkingal, and H.S. Kim, ‘’Severe plastic deformation and strain localization in groove pressing’’, Journal of Computational Materials Science, 43, 641-645, 2008.

[12] J. Lee, and J. Park, ‘’Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement’’, Journal of Materials Processing Technology, 130, 208-213, 2002.

[13]A. Mirsepasi, M. Nili-Ahmadabadi, M. Habibi-Parsa, H. Ghasemi-Nanesa, and A.F. Dizaji, ‘’Microstructure and mechanical behavior of martensitic steel severely deformed by the novel technique of repetitive corrugation and straightening by rolling’’, Journal of Materials Science and Engineering A, 551, 32-39, 2012.

[14] H. Shahmir, M. Nili-Ahmadabadi, A. Razzaghi, M. Mohammadi, C. T. Wang, J. M. Jung, H. S. Kim and T.G. Langdon, ‘’Using dilatometry to study martensitic stabilization and  recrystallization kinetics in a severely deformed NiTi alloy’’, Journal of Materials Science, 50, 4003-4011, 2015.

[15]S. Mirab, M. Nili‐Ahmadabadi, A. Khajezade, M. Abshirini, M. H. Parsa, and N. Soltani, ’’On the Deformation Analysis during RCSR Process Aided by Finite Element Modeling and Digital Image Correlation’’, Advanced Engineering Materials, 2016.

]۱۶[پیمان. اصغری راد، محمود. نیلی احمد آبادی، حسن شیرازی، ‘’تحولاتریزساختاریفولادزنگنزن 304 نیمهجامدشدهپسازتغییرشکلپلاستیکشدید’’، انجمن مهندسی متالورژی ایران، ۱۳۹۵.

[17] M. R. Rocha and C. A. S. Olivier, ‘’Evaluation of the martensitic transformations in austenitic stainless steels, Evaluation of the martensitic transformations in austenitic stainless steels’’, Materials Science and Engineering A, 517, 281–285, 2009.

[18]L. Mosecker, D.T. Pierce, A. Schwedt, M. Beighmohamadi, J. Mayer, W. Bleck and J.E. Wittig, ‘’Temperature effect on deformation mechanisms and mechanical properties of a high manganese C+N alloyed austenitic stainless steel’’, Materials Science & Engineering A, 642, 71-78, 2015.

[19]G.B. Olson and M. Cohen, ‘’A general mechanism of martensitic nucleation: Part I. General concepts and the FCC → HCP transformation’’, Metallurgical Transactions A, 7, 1897-1904, 1976.

[20]S. Allain, J.P. Chateau and O. Bouaziz, ‘’A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel’’, Materials Science and Engineering A, 143, 387–389, 2004.

[21]Y.F. Shen, X.X. Li, X. Sun, Y.D. Wang and L. Zuo, "Twinning and martensite in a 304 austenitic stainless steel", Materials Science and Engineering A, 552, 514– 522, 2012.

[22]G. Liu, J. Li, S. Zhang, J. Wang, Q. Meng, ‘’ Dilatometric study on the recrystallization and austenization behavior of cold-rolled steel with different heating rates’’, Alloys and Compounds, 666, 309- 316, 2016.

[23] A. Hedayati, A. Najafizadeh, A. Kermanpur, F. Forouzan, ‘’The effect of cold rolling regime on microstructure and mechanical properties of AISI 304L stainless steel’’, Journal of Materials Processing Technology, 210, 1017–1022, 2010.

[24] L.E. Murr, ‘‘Stacking-fault anomalies and the measurement of stacking-fault free energy in fcc thin films’’, Thin Solid Films, 4, 389-412, 1969.

[25]M. J. Whelan, P. B. Hirsch, R. W. Horne, W. Bollmann, ‘‘Dislocations and stacking faults in stainless steel’’, Proceedings of the Royal Society, 524-538, 1957.

[26] Cullity, Bernard Dennis, and John W. Weymouth, ‘’Elements of X-ray Diffraction. American Journal of Physics’’, 25.6, 394-395, 1957.

[27] X.H. Chen, J. Lu, L. Lu and K. Lu, ‘’Tensile properties of a nanocrystalline 316L austenitic stainless steel’’, Journal of scripta materialia, 52, 1039–1044, 2005.

[28] F.J. Humphreys and M. Hatherly, ‘’Recrystallization and related annealing phenomena’’, second edition, 221-229, 2004.

[29]H. Azizi-Alizamini, M. Militzer and W.J. Poole, ‘’A novel technique for developing bimodal grain size distributionsin low carbon steels’’, Journal of scripta materialia, 57, 1065–1068, 2007.