تاثیر اندازه سلول‌ها بر ریزساختار و رفتار مکانیکی فوم‌های ترکیبی چدن نشکن متشکل از گوی‌های توخالی آلومینایی

نوع مقاله: مقاله پژوهشی

نویسنده

دانشگاه مهندسی فناوری های نوین قوچان، دانشکده مهندسی، گروه مهندسی صنایع

چکیده

فلزات سلولی و فوم‌های فلزی که به عنوان دسته‌ای از مواد مهندسی جدید شناخته می‌شوند، دارای ویژگی‌های منحصر به فردی هستند و در نتیجه، می‌توانند در بسیاری از کاربردهای صنعتی به صورت موفقیت‌آمیز مورد استفاده قرار گیرند. در این پژوهش، گوی‌‌های توخالی آلومینایی به منظور ایجاد سلول‌ها در چدن نشکن به کار گرفته شدند. فرآیند تولید گوی‌های توخالی آلومینایی شامل پوشش‌دهی دانه‌های پلی‌استیرن به عنوان زیرلایه توسط مخلوطی از پودرهای آلومینا و سیلیکات سدیم و استفاده از عملیات حرارتی به منظور خروج پلی‌استیرن می‌باشد. سپس، به منظور تولید فوم‌های ترکیبی چدنی از روش ریخته‌گری ماسه‌ای استفاده گردید. بعد از تهیه قالب‌، گوی‌های توخالی آلومینایی درون حفرات قالب جای داده شدند و در نهایت، مذاب‌‌ریزی انجام شد. نمونه‌های ریختگی سنگ‌زنی شدند و مطالعات میکروسکوپ نوری و میکروسکوپ الکترونی روبشی و آزمون فشار بر روی آن‌ها صورت گرفت. نتایج نشان می‌دهد که کاهش اندازه سلول‌ها منجر به بهبود رفتار فشاری فوم‌های چدنی می‌گردد. ریزساختار نمونه‌های تولیدی شامل پرلیت به همراه گرافیت‌های کروی احاطه شده با فریت است. در نمونه‌هایی که حاوی گوی‌های آلومینایی کوچک‌تر هستند، ضخامت دیواره سلول‌ها کاهش و بنابراین، سرعت سرد شدن افزایش می‌یابد. در نتیجه، سریع سرد شدن دیواره سلول‌ها در این نمونه‌ها موجب ایجاد فاز کاربید در ریزساختار می‌شود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Cell Size on the Microstructure and Mechanical Properties of Hollow Alumina Spheres-Ductile Iron Syntactic Foams

نویسنده [English]

  • Hamid Sazegaran
چکیده [English]

Cellular metals and metallic foams as a class of new engineering materials have unique properties and thus, these materials can be successfully used in many industrial applications. In this study, hollow alumina spheres were used to create cells and cell walls in ductile iron. Alumina hollow spheres were manufactured by polystyrene beads as the substrate and using the coating the polystyrene beads by mixture of alumina powder and sodium silicate as binder. Sand casting technique was used to produce ductile iron syntactic foams. In this technique, alumina hollow spheres were placed into the mold cavity and then, the molten metal was poured. Casting specimens were grinded and then, light microscopy, scanning electron microscopy evaluations, and compression testing were carried out. The results were shown that reduced cell sizes, improved compressive behavior of casting foams. The microstructure of casting specimens consisted of pearlite and ferrite surrounded nodular graphite. In the specimens with smaller alumina hollow spheres, the thickness of the cell walls decreases and cooling rate increases. Therefore, carbide phases were formed in microstructure.

کلیدواژه‌ها [English]

  • Syntactic foam
  • ductile iron
  • alumina hollow spheres
  • graphite phase
[1] J. Banhart and W. Brinkers, Journal of Material Science Letters, Vol. 18, pp: 617-619, 1999.

[2] Y. Sugimura, A. Rabiei, A.G. Evans, A. M. Hart and N. A. Fleck, Material Science and engineering A, Vol. 269, pp: 38-48, 1999.

[3] A. Rabiei, A. G. Evans and J. W. Hutchinson, Metall. and mater. Trans, Vol. 31A, pp: 1129-1136, 2000.

[4] M.F. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson and H.N.G. Wadley, Metal Foams: A Design Guide, Butterworth–Heinemann, Massachusetts, 2000.

[5] Y. Sugimura, J. meyer, M. Y. He, H. Bart-Smith, J. Grenstedt and A. G. Evans, Acta Mater, Vol. 45, pp: 5245-5259, 1997.

[6] A. G. Evans, J. W. Hutchinson and M. F. Ashby, Progress in Materials Science, Vol. 43, pp: 171-221, 1998.

[7] L. J. Gibson and M. F. Ashby, Cellular Solid, Structures and properties, 2nd, Cambridge university press, Cambridge, UK, 1997.

[8] A. Rabiei, L. Vendra, N. Reese, N. Young and B. P. Neville, Materials Transactions, Vol. 47, No. 9, pp: 2148-2153, 2006.

[9] U. Ramamurty and A. Paul, Acta Materialia, Vol. 52, pp: 869-876, 2004.

[10] G. Stephani, D. Kupp, T. D. Claar and U. Waag, International conference on Powder Metallurgy and Particulate Materials, Fraunhofer Institute for Manufacturing and Advanced Materials, pp: 50-58, 2001

[11] T. J. Lim, B. Smith, D. L. McDowell, Behavior of a random hollow sphere metal foam, Acta Materialia, Vol. 50, pp: 2867–2879, 2002.

[12] O. Anderson, U. Waag, L. Schneider, G. Stephani and B. Kieback, Advanced Engineering Materials, Vol. 2, pp: 192-195, 2000.

[13] M. Behnam, A. S. Golezani, M. M. Lima, The effect of size and morphology of iron powder on shell density in low carbon steel hollow spheres, Powder Metallurgy Progress, Vol.11, pp: 185-192, 2011.

[14] M. Behnam, A. S. Golezani, M. M. Lima, Optimization of surface quality and shell porosity in low carbon steel hollow spheres produced by powder metallurgy, Powder Technology, Vol. 235, pp: 1025–1029, 2013.

[15] C. Augustin and W. Hungerbach, Production of hollow spheres (HS) and hollow sphere structures (HSS), Materials Letters, Vol. 63, pp: 1109–1112, 2009.

[16] P. Yu, G. Stephani, S. D. Luo, H. Goehler and M. Qian, Microwave-assisted fabrication of titanium hollow spheres with tailored shell structures for various potential applications, Materials Letters, Vol. 86, pp: 84–87, 2012.

[17] E. Baumeister, S. Klaeger and A. Kaldos, Lightweight, hollow-sphere-composite (HSC) materials for mechanical engineering applications, Journal of Materials Processing Technology 155–156, pp: 1839–1846, 2004.

[18] P. Lhuissier, L. Salvo and Y. Brechet, Sintered hollow spheres: Random stacking behaviour under uniaxial tensile loading, Scripta Materialia, Vol. 63, pp: 277–280, 2010.

[19] W. S. Sanders and L. J. Gibson, Mechanics of BCC and FCC hollow-sphere foams, Materials Science and Engineering A, Vol.352, pp: 150-161, 2003.

[20] W. S. Sanders and L. J. Gibson, Mechanics of hollow sphere foams, Materials Science and Engineering A, Vol. 347, pp: 70-85, 2003.

[21] Ying Liu, He-xiang Wu, Xin-chun Zhang and B. Wang, The influence of lattice structure on the dynamic performance of metal hollow sphere agglomerates, Mechanics Research Communications, Vol. 38, pp: 569–573, 2011.

[22] S. Gasser, F. Paun, A. Cayzeele and Y. Brechet, Uniaxial tensile elastic properties of a regular stacking of brazed hollow spheres, Scripta Materialia, Vol. 48, pp: 1617–1623,‌ 2003.

[23] Ying Liu, He-Xiang Wu and Bin Wang, Gradient design of metal hollow sphere (MHS) foams with density gradients, Composites, Part B, Vol. 43, pp: 1346–1352, 2012.

[24] R. M. Hathaway and P.K. Rohatgi, Research into the production of a light weight cast iron (LWCI), Proc. Int. Conf. High Temperature Capillarity, 29 June- 2 July, Cracow, Poland, 1997.

[25] S. Sridhar, S. S. Mohamed Nazirudeen and M. Kavitha, Production of gunmetal foam castings-a novel technique, International Journal of Engineering Science and Technology, Vol. 2(10), pp: 5080-5087, 2010.

[26] A. Marcilla and M. Beltran, Kinetic study of the thermal decomposition of polystyrene and polyethylene-vinyl acetate graft copolymers by thermogravimetric analysis, poly degrad stab, vol. 50, 1995, pp: 117-124.

[27] A. Kokta, M. Valada and E. Martin, Thermal decomposition of polystyrene: effect of molecular weight, J Poly Sci, vol. 12, 1974, pp: 271-220.

[28] J.L. Gurman, L. Baier and B.C. Levin, Polystyrenes: A review of the literature on the products of thermal decomposition and toxicity, Fire Mater, vol. 11, 1987, pp: 109-130.

[29] M. Guita, Thermal degradation of polystyrene, British Poly J, vol. 18, 1986, pp: 226-230.

[30] D. Wittig, Pressureless infiltrated alumina and zirconia based steel – MMCs, Doctoral Thesis, Technical University of Bergakademie Freiberg, Italy, 2008.

[31] N. Eustathopoulos, M. G. Nicholas, and B. Drevet, Wettability at high temperatures, Pergamon Materials Series, Amsterdam/ Lausann e/ New York/ Oxford/Shannon/ Singapore/ Tokyo: Pergamon, pp: 420-435, 1999.

[32] E. Kapilashrami, Investigation of interactions between liquid Iron containing oxygen and aluminosilicate refractories, Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden, 2003.

[33] A. K. Shaik dawood and S. S. Mohamed Nazirudeen, A Development of Technology for Making Porous Metal Foams Castings, Jordan Journal of Mechanical and Industrial Engineering, Vol. 4, pp: 292 – 299, 2010.

[34] H. Sazegaran, A. R. Kiani-Rashid, and J. Vahdati Khaki, Effects of sphere size on the microstructure and mechanical properties of ductile iron–steel hollow sphere syntactic foams, International Journal of Minerals, Metallurgy and Materials, pp: 676-682, 2016.

[35] T. Skaland, Nucleation mechanisims in ductile iron, Proc AFS Cast Iron Inoculeation Conference, 2005, Schaumburg, Illinios.

[36] S.C. Murcia, E.A. Ossa, and D.J. Celentano, Nodule evolution of ductile cast iron during solidification, Met Mater Trans B, , vol. 45B, 2014, pp: 707-718.

[37] M. Gorny and E. Tyrala, Effect of Cooling Rate on Microstructure and Mechanical Properties of Thin-Walled Ductile Iron Castings, JMEPEG, vol. 22, 2013, pp: 300–305.

[38] F. Binczyk, A. Kowalski, J. Furmanek,  The effect of cooling rate on the microstructure of nodular cast iron, Arch Found Eng, vol. 7, 2007, pp: 115-118.