مروری بر بازگردانی باتری‌های لیتیوم-یون به روش هیدرومتالورژی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشگاه سهند

2 هیئت علمی دانشگاه سهند

3 هیئت علمی دانشگاه شهید مدنی

چکیده

در سال‌های اخیر به دلیل ازدیاد مصرف باتری‌های لیتیوم-یون در تجهیزات مختلف الکتریکی و الکترونیکی، بازگردانی آنها توجه ویژه‌ای را به خود جلب کرده است. بازگردانی این باتری‌ها از دو دیدگاه زیست محیطی و منابع فلزی موجود در آنها امری ضروری تلقی شده و هدف این مقاله نیز مروری بر جایگاه فناوری‌های بازگردانی این باتری‌ها می‌باشد. در کنار انواع روش‌های بازگردانی، روش هیدرومتالورژی فرآیند تثبیت شده‌ای برای جداسازی و بازگردانی فلزات بوده و روند بازگردانی با این روش دارای سه مرحله پیش‌عملیات، لیچینگ و بازیابی نهایی می‌باشد. در این مقاله علاوه بر توضیح مختصر ساختار و اجزا باتری، انواع روش‌ها اعم از روش‌های شیمیایی و فیزیکی مورد استفاده در مراحل پیش‌عملیات، لیچینگ و بازیابی و همچنین ترکیب این روش‌ها توضیح داده شده است. عملیات حرارتی، التراسونیک، انحلال و روش‌های مکانیکی از جمله روش‌های رایج در پیش‌عملیات بوده و استخراج حلالی، رسوب‌دهی، تبلور و الکتروشیمیایی نیز از پرکاربردترین روش‌ها در بخش بازیابی به شمار می‌روند. در نهایت دسته‌بندی انواع تحقیقات انجام شده در زمینه بازگردانی این نوع باتری‌ها در این مقاله گزارش شده است. تقسیم‌بندی پژوهش‌ها دربرگیرنده مطالعات در زمینه بررسی و بهینه‌سازی هر کدام از مراحل سه‌گانه روش هیدرومتالورژی و همچنین سنتز الکترودهای جدید است.

کلیدواژه‌ها


عنوان مقاله [English]

An Overview on the Recycling of Lithium-Ion Batteries via Hydrometallurgical Method

چکیده [English]

During recent years recycling of lithium-ion batteries has attracted a lot of attention due to their extensive applications in various electric and electronic vehicles. Recycling of these batteries is of a great importance due to environmental issues and metal sources content, so this paper is to review the current status of these batteries’ recycling technologies. Among different recycling methods, hydrometallurgical based route is an optimized method to separate and recover metals and it has three steps as pre-treatment, leaching and deep recovery. In addition to brief description of these batteries’ structure and components, this paper has summarized the chemical, physical processes utilized in all steps of pre-treatment, leaching and metal recovery. Heat treatment, ultrasonic, dissolving and mechanical treatment are the common methods in the pre-treatment step and crystallization, solvent extraction, electrochemical and precipitation are accounted most used methods in the recovery step. Finally all investigations operated over the recycling issue also have been summarized in this paper. These categorized studies include both research and optimization into each triple step of hydrometallurgical route and new electrodes synthesis.

کلیدواژه‌ها [English]

  • Recycling
  • Lithium-ion battery
  • Hydrometallurgy
 [1] Zenga,X.,Lia N.Singh,J., “Recycling of Spent Lithium-Ion Battery:ACritical Review”, Critical Reviews in Environmental Science and Technology, Vol.44,PP.1129-1165 (2014).

[2] Georgi-Maschlera,T., Friedricha,B., Weyheb,R., Heegnc,H., Rutzc,M., “Development of a recycling process for Li-ion batteries”, Journal of Power Sources, Vol.207,PP.173– 182 (2012).

[3] Zhang,X., Cao,H., Xie,Y., Ning,P., An,H., You,H., Nawaz,F., “A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathodescraps of lithium-ion batteries: Process optimization and kinetics Analysis”, Separation and Purification Technology, Vol.150,PP.186-195 (2015).

[4] Xu,J., Francis,H.R. T.R.W., Lum,K. R., Wang,J., Liang,B., “A review of processes and technologies for the recycling of lithium-ion secondary batteries”, Journal of Power Sources, Vol.177,PP.512-527 (2008).

[5] Scrosati,B., Garche,J.,  “Lithium batteries: status, prospects and future”, Journal of Power Sources, Vol.195,PP.2419-2430 (2010).

[6] Wang,J., Chen,M., Chen,H., Luo,T., Xu,Z., “Leaching study of spent Li-ion batteries”,Procedia Environmental Sciences, Vol.16,PP.443-450 (2012).

[7] Shin,S.,Kim,N., Sohn,J.,Yang,D.H., Kim,Y.H., “Development of a metal recovery process from Li-ion battery wastes”, Hydrometallurgy, Vol.79,PP.172– 181 (2005).

[8] Sarath,P., Bonda,S., Mohanty,S.,  Nayak,S. K., “Mobile phone waste management and recycling: view and trends”, Waste Management, http://dx.doi.org/10.1016/j.wasman.2015.09.013(2015).

[9] Boyden,A., Soo,V. K., Doolan,M., “The environmental impacts of recycling portable lithium-ion battaries”, Procedia CIRP, Vol.48,PP.188-193 (2016).

[10] Joulié,M., Laucournet,R., Billy,E., “Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries”, Journal of Power Sources, Vol.247,PP.551-555 (2014).

[11] Chagnes,A., Pospiechc,B., “A brief review on hydrometallurgical technologies for recycling spent lithium-ion batteries”, Journal of Chemical Technology and Biotechnology, Vol.88,PP.1191-1199 (2013).

[12] Sun,L., Qiu,K., “Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries”, Journal of Hazardous Materials, Vol.194,PP.378-384 (2011).

[13] Knights,B.D.H., Saloojee,F., “Lithium Battery Recycling – keeping the future fully charged. Green Economy Research Report”, Green Fund, Development Bank of Southern Africa, Midrand, Vol.1,PP.1-43 (2015).

[14] Contestabile,M., Panero,S., Scrosati,B., “A laboratory-scale lithium battery recycling process”, Journal of Power Sources,Vol.83,PP.75–78 (1999).

[15] Sonoc,A., Jeswiet,J., Soo,V.K., “Opportunities to improve recycling lithium ion batteries”, Procedia CIRP, Vol.29,PP.752-757 (2015).

[16] Contestabile,M., Panero,S., Scrosati,B., “A laboratory-scale lithium-ion battery recycling process”, Journal of Power Sources, Vol.92,PP.65-69 (2001).

[17] Swain,B., Jeong,J., Lee, J.C., Lee,G. H., Sohn,J.S., “Waste cathodic active material generated during manufacturing of lithium ion batteries”, Journal of Power Sources, Vol.167,PP.536-544 (2007).

[18] Ordonez,J., Gago,E.J., Girard,A., “Processes and technologies for the recycling and recovery of spent lithium-ion batteries”, Renewable and Sustainable Energy Reviews, Vol.60, PP195-205 (2016).

[19] Nayaka,G.P., Pai,K.V., Santhosh,G., Manjanna, J., “Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent”, Journal of Environmental Chemical Engineering, Vol.4,PP.2378-2383 (2016).

[20] Thyabat,S.Al., Nakamura,T., Shibata,E., Lizuka,A., “Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: Critical review”, Minerals Engineering, Vol.45,PP.4-17 (2013).

[21] Li,J.,Wang,G., Xu,Z., “Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment process for recycling spent lithium-ion batteries”, Waste Management, http://dx.doi.org/10.1016/j.wasman.2016.03011(2016).

[22] Ra,D., Han,K., “Used lithium ion rechargeable battery recycling using Etoile-Rebatt technology”, Journal of Power Sources, Vol.163,PP.284–288 (2006).

[23] Bresser,D., Paillard,E., Passerini,S., “Advances in batteries for medium- and large-scale energy storage”, Woodhead Publishing, PP.125-211 (2014).

[24] Lithium-ion battery overview, Technical note, Lighting global, Vol.10, PP.1-16(2012).

[25] Ohzuku,T.,.Brodd,R.J., “An overview of positive-electrode materials for advanced lithium-ion batteries”, Journal of Power Sources, Vol.174,PP.449–456 (2007).

[26] Grillet,A.M., Humplik,T., Striiup,E.K., Roberts,S.A., Barringer,D.A., Snyder,C.M.,  Janvrin,M.R., Apblett,C.A.,“Conductivity Degradation of Polyvinylidene Fluoride Composite Binder during Cycling: Measurements and Simulations for Lithium-Ion Batteries”, Journal of Electrochemical Society, Vol.163,PP.1859-1871 (2016).

[27] Latin, M. J., “Recycling of Lithium ion Cells and Batteries”, Journal of Power Sources, Vol.97-98,PP.736-738 (2001).

[28] Jha ,M., Kumari,A., Kumari Jha,A., Kumar,V., Hait, J. , Pandey, B., “Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone”, Waste Management, Vol.33,PP.1890-1897 (2013).

[29] Bernardes,A.M., Espinosa,D.C.R. , Tenório,J.A.S., “Recycling of batteries: a review of current processes and technologies”, Journal of Power Sources, Vol.130,PP.291-298 (2004).

[30] Zhang,X., Xie,Y., Lin,X., Li,H., Cao,H., “An overview on the processes and technologies for recycling cathodic active materials from spent lithium-ion batteries”, Journal of Materials Cycles and Waste Management, Vol.15,PP.420–430 (2013).

[31] Zheng,Y., Long,H.L., Zhou,L., Wu,Z.S., Zhou,X., You,L., Yang,Y., Liu,J.W.,  “Leaching Procedure and Kinetic Studies of Cobalt in Cathode Materials from Spent Lithium Ion Batteries Using Organic Citric Acid as Leachant”, International Journal of Environmental Research, Vol.10,PP.159-168 (2016).

[32] Huang,Y., Han,G., Liu,J., Chai,W., Wang,W., Yang,S., Su,S., “A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process”, Journal of Power Sources, Vol.325,PP.555-564 (2016).

[33] Zhang,T., He,Y., Ge,L., Fu,R., Zhang,X., Huang,Y., “Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries”, Journal of Power Sources, Vol.240,PP.766-771 (2013).

[34] Granata,G., Pannanelli,F., Moscardini,E., Takacova,Z., Havlik,T., Toro,L., “Simultaneous recycling of nickel metal hydride, lithium ion and primary lithium batteries: Accomplishment of European Guidelines by optimizing mechanical pre-treatment and solvent extraction operations”, Journal of Power Sources, Vol.212,PP.205-211 (2012).

[35] Wanga,X.,Gaustadb,G., Babbitt,C.W., “Targeting high value metals in lithium-ion battery recycling via shredding and size-based separation”, Waste Management, Vol.51,PP.204-213 (2016).

[36] Sun,L., Qiu,K., “Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries”, Journal of Hazardous Materials, Vol.194,PP.378-384 (2011).

[37] Sun,L., Qiu,K., “Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries”, Waste Management, Vol.32,PP.1575-1582 (2012).

[38] Chen,L., Tanf,X., Zahng,Y., Li,L., Zeng,Z., Zhang,Y., “Process for the recovery of cobalt oxalate from spent lithium-ion batteries”, Hydrometallurgy, Vol.108,PP.80-86 (2011).

[39] Li,L., Ge,J., Wu,F., Chen,R., Chen,S., Wu,B., “Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant”, Journal of Hazardous Materials, Vol.176,PP.288–293 (2010).

[40] Kursunoglu,S., Kaya,M., “Recovery of Manganese from Spent Batteries Using Guar Meal as a Reducing Agent in a Sulfuric Acid Medium”, Industrial and Engineering. Chemistry Research, Vol.52,PP.18076−18084 (2013).

[41] Shi,C., Jing,Y., Xiao,J., Wang,X., Yao,Y., Jia,Y., “Solvent extraction of lithium from aqueous solution using non-fluorinated functionalized ionic liquids as extraction agents”, Separation and Purification Technology, Vol.172,PP.473-479 (2017).

[42] Ferreira,D., Prados,L., Majuste,D., Mansur,M., “Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries”, Journal of Power Sources, Vol.187,PP.238-246 (2009).

[43] Lupi,C.,  Pasquali,M., Era,A.D., “Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes”, Waste Management, Vol.25,PP.215–220 (2005).

[44] Barbieri,E.M.S, Lima,E.P.C., Cantarino,S.J., lelis,M.F.F., Freitas,M.B.J.G., “Recycling of spent ion-lithium batteries as cobalt hydroxide, and cobalt oxide films formed under a conductive glass substrate, and their electrochemical properties”, Journal of Power Sources, Vol.269,PP.158-163 (2014).

[45] Nan,J, Han,D, Zuo,X, “Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction”, Journal of Power Sources, Vol.152,PP.278–284 (2005).

[46] Ku,H., Jung,Y., Jo,M., Park,S., kim,S., Yang,D., rhee,K., An,E.M., Sohn,J., Kwon,K., “Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching”, Journal of Hazardous Materials, Vol.313,PP.138–146 (2016).

[47] Ganter,M.J., Landi,B.J., Babbitt,C.W., Anctil,A., Gaustad,G., “Cathode refunctionalization as a lithium ion battery recycling alternative”, Journal of Power Sources, Vol.256,PP.274-280 (2014).

[48] Yao,L., Yao,H., Xi,G., Feng,Y., “Recycling and synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries using D, L-malic acid”, The Royal Society of Chemistry, Vol.6,PP.17947–17954(2016).

[49] Lu,M., Zhang,H., Wang,B., Zheng,X., Dai,C., “The Re-Synthesis of LiCoO2 from Spent Lithium Ion Batteries Separated by Vacuum-Assisted Heat-Treating Method”, International Journal of Electrochemical Science, Vol.8,PP.8201 – 8209 (2013).

[50] Takacova,Z., Havlik,T, Kukurugya,F, Orac,D, “Cobalt and lithium recovery from active mass of spent Li-ion batteries: Theoretical and experimental approach”, Hydrometallurgy, Vol.163,PP. 9-17 (2016).

[51] Shuva,M., Kurny,A.S.W., “Dissolution Kinetics of Cathode of Spent Lithium Ion Battery in Hydrochloric Acid Solutions”, Journal of Institution Engineers(India) Series D, Vol.94,PP.13–16 (2013).

[52] Li,L., Ge,J., Chen,R.,Wu,F.,Chen,S., Zhang,X., “Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries”, Waste Management, Vol.30,PP.2615-2521 (2010).

[53] Hu,C.,  Guo,J., Wen,J., Peng,Y.,  “Preparation and Electrochemical Performance of Nano-Co3O4 Anode Materials from Spent Li-Ion Batteries for Lithium-Ion Batteries”, Journal of Materials Science and Technology, Vol.29,PP.215-220 (2013).