سنتز و مشخصه یابی الکترودهای کاتد LSCF و LSCF/GDC به منظور استفاده در پیل سوختی اکسید جامد

نوع مقاله: مقاله پژوهشی

نویسندگان

دانشکده مهندسی متالورژی و مواد، پردیس دانشکده های فنی، دانشگاه تهران

چکیده

در این پژوهش ساختار اکسیدی و پروسکایتی (LSCF) LaxSr1-xCoyFe1-yO3 به وسیله‌ی روش سنتز به کمک گلایسین (Glycine Nitrate Process-GNP) به منظور استفاده در پیل سوختی اکسید جامد سنتز شد. نتایج حاصل از آنالیز پراش پرتو ایکس (X-ray Diffraction-XRD) نشان دهنده حضور ماده LSCF سنتز شده به صورت تک‌فاز است. پودر LSCF سنتز شده به صورت جداگانه و همچنین پس از مخلوط شدن با سریای آلاییده شده با گادولونیم (GDC) به صورت کامپوزیت LSCF/GDC به عنوان الکترود کاتد پیل سوختی اکسید جامد مورد بررسی قرار گرفت. در ابتدا، مشخصه‌یابی الکترودها به وسیله‌ی روش اندازه‌گیری هدایت صفحه‌ای چهار نقطه ای در دماهای پخت گوناگون به صورت درجا صورت گرفت. از مقایسه بین دو الکترود، کامپوزیت LSCF/GDC دارای هدایت الکتریکی پایین‌تری به دلیل حضور ماده GDC به عنوان یک عایق الکتریسیته در ساختار بود. همچنین اندازه‌گیری الکتروشیمیایی به منظور مطالعه عمیق‌تر رفتار ماده الکترودی صورت گرفت. با وجود کمتر بودن هدایت الکتریکی الکترود کامپوزیتی LSCF/GDC نسبت به الکترود تک‌فاز LSCF، الکترود LSCF/GDC عملکرد بهتری را به دلیل هدایت یونی بالاتر از خود نشان داد به طوری که مقاومت پلاریزاسیون برابر Ω.cm2 027/0 در دمای °C 750 در هوا حاصل گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Synthesize Characterization of LSCF and LSCF/GDC Cathodes for Solid Oxide Fuel Cell

نویسندگان [English]

  • Seyed-Vahidreza Seyed-Vakili
  • Alireza Babaei
  • Hossein Abdizadeh
  • Saeed Heshmati-Manesh
School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran
چکیده [English]

LaxSr1-xCoyFe1-yO3 (LSCF) perovskite oxides have been successfully synthesized by GNP method (Glycine Nitrate Process) to use as a cathode electrode in solid oxide fuel cells. X-ray diffraction (XRD) results showed formation of single phase LSCF powder without presence of any impurity. In this study, LSCF and LSCF/GDC inks were used as cathode material. The inks were analyzed with an in-situ sintering study where the in-plane conductivity was used to investigate the effect of different sintering temperatures on the conductivity of the electrodes. Compared to LSCF cathode, it was shown that LSCF/GDC has lower in-plane conductivity due to the present of GDC, which is not an electronic conductor at high temperature. Electrochemical analysis was performed at different temperatures to deeply understand the behavior of the cathode materials. A two-electrode configuration was used to measure the impedance of the cells. LSCF/GDC cathode manifest good performances with polarization resistance of 0.027 Ω cm2 at 750 °C in the air atmosphere.

کلیدواژه‌ها [English]

  • Solid oxide fuel cell
  • Cathode electrode
  • LSCF
  • GDC
  • Impedance
1.        Jeffrey Fergus, Rob Hui, Xianguo Li, David P. Wilkinson JZ. Solid Oxide Fuel Cells: Materials Properties and Performance. Taylor & Francis Group; 2008.

2.        Gorte R, Vohs J, Skafte TL, Kee R, Varcoe J, Metcalfe I, et al. Materials development: general discussion. Faraday Discuss [Internet]. 2015;307–28. Available from: http://xlink.rsc.org/?DOI=C5FD90074C

3.        Wachsman E, Ishihara T, Kilner J. Low-temperature solid-oxide fuel cells. MRS Bull [Internet]. Cambridge University Press; 2014 Sep 10 [cited 2015 Jun 22];39(9):773–9. Available from: http://journals.cambridge.org/abstract_S0883769414001924

4.        Andújar JM, Segura F. Fuel cells: History and updating. A walk along two centuries. Renew Sustain Energy Rev [Internet]. 2009 Dec [cited 2013 Aug 14];13(9):2309–22. Available from: http://dx.doi.org/10.1016/j.rser.2009.03.015

5.        Gao Z, Mogni L V., Miller EC, Railsback JG, Barnett SA. A perspective on low-temperature solid oxide fuel cells. Energy Environ Sci [Internet]. The Royal Society of Chemistry; 2016 [cited 2016 Jul 28];9(5):1602–44. Available from: http://xlink.rsc.org/?DOI=C5EE03858H

6.        Richter J, Holtappels P, Graule T, Nakamura T, Gauckler LJ. Materials design for perovskite SOFC cathodes. Monatshefte für Chemie - Chem Mon [Internet]. Springer Vienna; 2009 Sep 16 [cited 2016 Jul 28];140(9):985–99. Available from: http://link.springer.com/10.1007/s00706-009-0153-3

7.        Yurkiv V, Costa R, Ilhan Z, Ansar A, Bessler WG. Impedance of the surface double layer of LSCF/CGO composite cathodes: An elementary kinetic model. J Electrochem Soc. 2014;161(4):F480–92.

8.        Jiang S. A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes. Solid State Ionics [Internet]. 2002 Jan [cited 2013 Jun 18];146(1–2):1–22. Available from: http://dx.doi.org/10.1016/S0167-2738(01)00997-3

9.        Chroneos A, Yildiz B, Tarancón A, Parfitt D, Kilner J a. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ Sci [Internet]. 2011;4(8):2774. Available from: http://oro.open.ac.uk/35228/%5Cnhttp://xlink.rsc.org/?DOI=c0ee00717j

10.      Wang W, Mogensen M. High-performance lanthanum-ferrite-based cathode for SOFC. Solid State Ionics [Internet]. 2005 Feb 14 [cited 2015 Mar 11];176(5–6):457–62. Available from: http://www.sciencedirect.com/science/article/pii/S016727380400534X

11.      Kiebach R, Zhang W-W, Zhang W, Chen M, Norrman K, Wang H-J, et al. Stability of La0.6Sr0.4Co0.2Fe0.8O3/Ce0.9Gd0.1O2 cathodes during sintering and solid oxide fuel cell operation. J Power Sources. 2015;283:151–61.

12.      Liu Y, Wang F, Chi B, Pu J, Jian L, Jiang SP. A stability study of impregnated LSCF–GDC composite cathodes of solid oxide fuel cells. J Alloys Compd [Internet]. 2013 [cited 2013 Dec 4];578:37–43. Available from: http://www.sciencedirect.com/science/article/pii/S092583881301181X

13.      Wang S. Performance of a La0.6Sr0.4Co0.8Fe0.2O3–Ce0.8Gd0.2O1.9–Ag cathode for ceria electrolyte SOFCs. Solid State Ionics [Internet]. 2002 Feb [cited 2013 Jun 18];146(3–4):203–10. Available from: http://dx.doi.org/10.1016/S0167-2738(01)01015-3

14.      Esquirol A, Brandon NP, Kilner JA, Mogensen M. Electrochemical Characterization of La[sub 0.6]Sr[sub 0.4]Co[sub 0.2]Fe[sub 0.8]O[sub 3] Cathodes for Intermediate-Temperature SOFCs. J Electrochem Soc [Internet]. The Electrochemical Society; 2004 Nov 1 [cited 2015 Oct 28];151(11):A1847. Available from: http://jes.ecsdl.org/content/151/11/A1847.full

15.      da Conceição L, Silva AM, Ribeiro NFP, Souza MMVM. Combustion synthesis of La0.7Sr0.3Co0.5Fe0.5O3 (LSCF) porous materials for application as cathode in IT-SOFC. Mater Res Bull. 2011;46(2):308–14.

16.      Nielsen J, Hjalmarsson P, Hansen MH, Blennow P. Effect of low temperature in-situ sintering on the impedance and the performance of intermediate temperature solid oxide fuel cell cathodes. J Power Sources [Internet]. Elsevier B.V; 2014;245:418–28. Available from: http://dx.doi.org/10.1016/j.jpowsour.2013.06.067

17.      Tai L, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR. Structure and electrical properties of La1 − xSrxCo1 − yFeyO3. Part 2. The system La1 − xSrxCo0.2Fe0.8O3. Solid State Ionics [Internet]. Elsevier; 1995 Mar [cited 2016 Jun 12];76(3–4):273–83. Available from: http://linkinghub.elsevier.com/retrieve/pii/016727389400245N

18.      Sakito Y, Hirano A, Imanishi N, Takeda Y, Yamamoto O, Liu Y. Silver infiltrated La0.6Sr0.4Co0.2Fe0.8O3 cathodes for intermediate temperature solid oxide fuel cells. J Power Sources [Internet]. 2008 Aug [cited 2013 Jun 11];182(2):476–81. Available from: http://dx.doi.org/10.1016/j.jpowsour.2008.04.052

19.      Scott S. Reactivity of LSCF perovskites. Solid State Ionics [Internet]. 2002 Dec [cited 2013 Jun 12];152–153(null):777–81. Available from: http://dx.doi.org/10.1016/S0167-2738(02)00327-2

20.      Adler SB. Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes †. Chem Rev [Internet]. American Chemical Society; 2004 Oct [cited 2016 May 14];104(10):4791–844. Available from: http://dx.doi.org/10.1021/cr020724o

21.      Nielsen J, Jacobsen T, Wandel M. Impedance of porous IT-SOFC LSCF:CGO composite cathodes. Electrochim Acta [Internet]. 2011 Sep [cited 2015 Oct 13];56(23):7963–74. Available from: http://www.sciencedirect.com/science/article/pii/S0013468611007638

22.      Macdonald JR, Barsoukov E. Impedance Spectroscopy: Theory, Experiment, and Applications. [1] J. R. M. Evgenij Barsoukov, “Impedance Spectroscopy: Theory, Experiment, and Applications.” . 2005.

23.      Liu M, Ding D, Blinn K, Li X, Nie L, Liu M. Enhanced performance of LSCF cathode through surface modification. Int J Hydrogen Energy [Internet]. 2012 May [cited 2013 Jun 12];37(10):8613–20. Available from: http://dx.doi.org/10.1016/j.ijhydene.2012.02.139

24.      Nielsen J, Hjelm J. Impedance of SOFC electrodes: A review and a comprehensive case study on the impedance of LSM:YSZ cathodes. Electrochim Acta [Internet]. Elsevier Ltd; 2014;115:31–45. Available from: http://dx.doi.org/10.1016/j.electacta.2013.10.053