بررسی ریزساختار و رفتار سودوالاستیک در آلیاژ Fe-10Ni-7Mn (wt.%) قبل و بعد از اعمال فرایند پیچش تحت فشار بالا

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در پژوهش حاضر، رفتار سودوالاستیک آلیاژ Fe-10Ni-7Mn (wt.%) قبل و بعد از اعمال فرایند پیچش تحت فشار بالا مورد ارزیابی قرار گرفت. بررسی­های ریزساختاری و آنالیز فازی نشان داد که پس از اعمال فرایند پیچش تحت فشار بالا به میزان 15 دور بر روی نمونه اولیه در شرایط آنیل محلولی، کسر کوچکی از فاز آستنیت فوق ریزدانه با چگالی بالایی از نابجایی­ها در ساختار زمینه مارتنزیتی ایجاد شده و اندازه دانه مارتنزیت به شدت کاهش یافت. در ادامه انجام عملیات حرارتی آنیل همدما در دمای °C 590 در منطقه دو فازی آستنیت-فریت (a+g) و به مدت ks 8/1 بر روی نمونه اولیه و نمونه تغییرشکل شدید یافته، منجر به تشکیل فاز آستنیت برگشتی با میانگین اندازه دانه­های mm 5/6 در ریزساختار نمونه اولیه و nm 360 در ریزساختار نمونه تغییرشکل شدید یافته شد. تشکیل آستنیت برگشتی ریزدانه پس از اعمال فرایند آنیل همدما بر روی نمونه پیچش یافته تحت فشار بالا موجب ایجاد سختی و استحکام نسبتا بالا در ماده گردید. بررسی آزمون کشش سیکلی بر روی آلیاژ در شرایط مختلف نشان داد که آستنیت ایجاد شده در اثر اعمال فرایند پیچش تحت فشار بالا و نیز آستنیت برگشتی ایجاد شده پس از انجام فرایند آنیل همدمای نمونه تغییر شکل شدید یافته، رفتار سودوالاستیک از خود نشان دادند. بیشترین درصد سودوالاستیسیته نمونه پیچش یافته تحت فشار بالا قبل و بعد از انجام عملیات آنیل همدما بترتیب حدود 65% و 45% بدست آمد.   

کلیدواژه‌ها


عنوان مقاله [English]

Study on the microstructure and pseudoelastic behavior in an Fe-10Ni-7Mn (wt.%) alloy before and after high pressure torsion (HPT) processing

نویسنده [English]

  • Hamidreza Koohdar
Assistant Professor, School of Metallurgy and Materials Engineering, Iran University of Science & Technology (IUST), Tehran, Iran
چکیده [English]

In the present research, the pseudoelastic behavior of an Fe-10Ni-7Mn (wt.%) alloy was investigated before and after high pressure torsion (HPT) processing. Microstructural examination and phase analysis confirmed that the HPT processing of the solution-annealed initial specimen for 15 turns led to form a small fraction of the fine grained strain-induced austenite with a high density of dislocations and reduced the grain size of martensite. Then, isothermal annealing treatment on the initial and HPT-processed specimens at 590 °C in dual phase (a+g) region for 1.8 ks introduced the reversed austenite with average grain sizes of 6.5 mm in the microstructure of the initial specimen and 360 nm in the HPT-processed one. Forming the fine-grained reversed austenite in the microstructure of the HPT-processed specimen after isothermal annealing led to obtain a relatively high hardness and strength. In addition, cyclic tensile testing revealed pseudoelastic behavior of the reversed austenite in the HPT-processed specimen before and after isothermal annealing. Maximum pseudoelasticity values of about 65% and 45% were obtained for HPT-processed specimens before and after isothermal annealing, respectively.

کلیدواژه‌ها [English]

  • Fe-Ni-Mn martensitic steel
  • Microstructure evolution
  • High-pressure torsion
  • Reversed austenite
  • Pseudoelastic behavior
 [1] Maruyama T, Kubo H, Ohkata I, Tsuchiya K, Miyazaki S. Ferrous (Fe-based) shape memory alloys (SMAs): properties, processing and applications, shape memory and superelastic alloys: technologies and applications. Woodhead Publishing LTD., Cambridge, 2011, pp. 141-159.
[2] Cladera A, Weber B, Leinenbach C, Czaderski C, Shahverdi M, Motavalli M. Iron-based shape memory alloys for civil engineering structures: an overview. Const Build Mater. 2014; 63: 281-93.
 
[3] Watanabe S, Sato S, Miura K. An unique feature of mechanical property of iron-nickel-manganese alloy. J Mater Process Technol. 1995; 53: 467-76.
[4] Kajiwara S, Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Mater Sci Eng A. 1999; 273: 67-88.
[5] Baruj A, Bertolino B, Troiani HE. Temperature dependence of critical stress and pseudoelasticity in a Fe-Mn-Si-Cr pre-rolled alloy. J Alloys Compd. 2010; 502: 54-8.
[6] Sawaguchi T, Kikuchi T, Kajiwara S. The pseudoelastic behavior of Fe-Mn-Si-based shape memory alloys containing Nb and C. Smart Mater Struct. 2005; 14: S317-S22.
[7] Otsuka H, Yamada H, Maruyama T, Tanashi H, Matsuda S, Murakami M. Effects of alloying additions on Fe-Mn-Si shape memory alloys. ISIJ Int. 1990; 30: 674-9.
[8] Yang JH, Chen H, Wayman CM. Development of Fe-based shape memory alloys associated with face-centered cubic-hexagonal close-packed martensitic transformations: Part I. Shape memory behavior. Metall Mater Trans A. 1992; 23: 1431-7.
[9] Lin HC, Lin KM, Wu SK, Wang TP, Hsiao YC. Effects of thermo-mechanical training on a Fe59Mn30Si6Cr5 shape memory alloy. Mater Sci Eng A. 2006; 438: 791-5.
[10] Dong Z, Klotz UE, Leinenbach C, Bergamini A, Czaderski C, Motavalli M. A novel Fe-Mn-Si shape memory alloy with improved shape recovery properties by VC precipitation. Adv Eng Mater. 2009; 11: 40-4.
[11] Kajiwara S, Liu D, Kikuchi T, Shinya N. Remarkable improvement of shape memory effect in Fe-Mn-Si based shape memory alloys by producing NbC precipitates. Scr Mater. 2001; 44: 2809-14.
[12] Cao Y, Ni S, Liao X, Song M, Zhu Y. Structural evolutions of metallic materials processed by severe plastic deformation. Mater Sci Eng R Rep. 2018; 133: 1-59.
[13] Shahmir H, Nili-Ahmadabadi M, Mohammadi M, Huang Y, Andrzejczuk M, Lewandowska M,  Langdon TG. Effect of Cu on amorphization of a TiNi alloy during HPT and shape memory effect after post-deformation annealing. Adv Eng Mater. 2020; 22: 1900387.
[14] Hossein Nedjad S, Nili-Ahmadabadi M, Furuhara T. Transmission electron microscopy study on the grain boundary precipitation of an Fe-Ni-Mn maraging steel. Metall Mater Trans A. 2008; 39: 19-27.
[15] Koohdar HR, Nili Ahmadabadi M, Habibi-Parsa M, Jafarian HR, Bhattacharjee T, Tsuji N. On the stability of reversely formed austenite and related mechanism of transformation in an Fe-Ni-Mn martensitic steel aided by electron backscattering diffraction and atom probe tomography. Metall Mater Trans A. 2017; 48: 5244-57.
[16] Lee YK, Shin HC, Leem DS, Choi JY, Jin W, Choi CS. Reverse transformation mechanism of martensite to austenite and amount of retained austenite after reverse transformation in Fe-3Si-13Cr-7Ni (wt.%) martensitic stainless steel. Mater Sci Thechnol. 2003; 19: 393-8.
[17] Lee SJ, Park Y, Lee YK. Reverse transformation mechanism of martensite to austenite in a metastable austenitic alloy. Mater Sci Eng A. 2009; 515: 32-7.
[18] Zhilyaev AP, Langdon TG. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog Mater Sci. 2008; 53: 893-979.
[19] Edalati K, Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988. Mater Sci Eng A. 2016; 652: 325-52.
[20] Pippan R. High-pressure torsion–features and applications. in: Zehetbauer MJ, Zhu YT (Eds.). Bulk Nanostructured Materials. Wiley-VCH. Weinheim. Germany. 2009; pp. 217-32.
[21] Shi S, Zhang Z, Wang X, Zhou G, Xie G, Wang D, Chen X, Ameyama K. Microstructure evolution and enhanced mechanical properties in SUS316LN steel processed by high pressure torsion at room temperature. Mater Sci Eng A. 2018; 711: 476-83.
[22] Gubicza J, El-Tahawy M, Huang Y, Choi H, Choe H, Labar JL, Langdon TG. Microstructure, phase composition and hardness evolution in 316L stainless steel processed by high-pressure torsion. Mater Sci Eng A. 2016; 657: 215-23.
[23] An XH, Lin QY, Sha G, Huang MX, Ringer SP, Zhu YT, Liao XZ. Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion, Acta Mater. 2016; 109: 300-13.
[24] Čižek J, Janeček M, Vlasák T, Smola B, Melikhova O, Islamgaliev RK, Dobatkin SV. The development of vacancies during severe plastic deformation. Mater Trans. 2019; 60: 1533-42.
[25] Muller T, Kapp MW, Bachmaier A, Felfer P, Pippan R. Ultrahigh-strength low carbon steel obtained from the martensitic state via high pressure torsion. Acta Mater. 2019; 166: 168-7.
[26] Kalahroudi FJ, Koohdar HR, Jafarian HR, Haung Y, Langdon TG, Nili-Ahmadabadi M. On the microstructure and mechanical properties of an Fe-10Ni-7Mn martensitic steel processed by high-pressure torsion. Mater Sci Eng A. 2019; 749: 27-34.
[27] Han JK, Liss KD, Langdon TG, Kawasaki M. Synthesis of a bulk nanostructured metastable Al alloy with extreme supersaturation of Mg. Sci Rep. 2019; 8: 17186.
[28] Xu C, Dobatkin SV, Horita Z, Langdon TG. Superplastic flow in a nanostructured aluminum alloy produced using high-pressure torsion, Mater Sci Eng A. 2009; 500: 170-5.
[29] Shahmir H, Nili-Ahmadabadi M, Huang Y, Jung JM, Kim HS, Langdon TG. Shape memory effect in nanocrystalline NiTi alloy processed by high-pressure torsion. Mater Sci Eng A. 2015; 626: 203-6.
[30] Koohdar HR, Nili-Ahmadabadi M, Kalahroudi FJ, Jafarian HR, Langdon TG. Effect of post-deformation annealing on the microstructure and mechanical behavior of an Fe-Ni-Mn steel processed by high-pressure torsion. J Mater Res Tech. 2021; 15: 1537-1546.
[31] Y. Cao, S. Ni, X. Liao, M. Song, Y. Zhu, Structural evolutions of metallic materials processed by severe plastic deformation, Mater Sci Eng R Rep. 2018; 133: 1-59.
[32] H.R. Jafarian, M.F. Tarazkouhi, Significant enhancement of tensile properties through combination of severe plastic deformation and reverse transformation in an ultrafine/nano grain lath martensitic steel, Mater Sci Eng A. 2017; 686: 113-120.
[33] Z.Q. Fan, T. Hao, S.X. Zhao, G.N. Luo, C.S. Liu, Q.F. Fang, The microstructure and mechanical properties of T91 steel processed by ECAP at room temperature, J Nucl Mater. 2013; 434: 417-421.
[34] Allain S, Chateau JP, Bouaziz O, Migot S, Guelton N. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe-Mn-C alloys. Mater Sci Eng A. 2004; 387-389: 158-62.
[35] Ghasemi-Nanesa H, Nili-Ahmadabadi M, Koohdar HR, Habibi-Parsa M, Hossein Nedjad S, Alidokht SA, Langdon TG. Strain-induced martensite to austenite reverse transformation in an ultrafine-grained Fe-Ni-Mn martensitic steel. Phill Mag. 2014; 94: 1493-07.
[36] Edalati K, Hashiguchi Y., Pereira PHR, Horita Z, Langdon TG. Effect of temperature rise on microstructural evolution during high-pressure torsion. Mater Sci Eng A. 2018; 714: 167-171.
[37] Ivanisenko Y, Maclaren I, Sauvage X, Valiev R, Fecht H. Shear-induced α→γ transformation in nanoscale Fe-C composite. Acta Mater. 2006; 54: 1659-1669.
[38] Cullity DB. Elements of X-Ray Diffraction. 2nd Edition, Addison-Wesley Publishing Company Inc., Phillippines, 1978.
[39] Koohdar HR, Nili-Ahmadabadi M, Jafarian HR, Habibi-Parsa M, GhasemiNanesa H, Shirazi H. Observation of pseudoelasticity in a cold rolled Fe-Ni-Mn martensitic steel, Mater Sci Eng A. 2016; 658: 86-90.