ساختارهای دو بعدی مکسین: مروری تحلیلی بر روش‌های سنتز و کاربردها

نوع مقاله : مقاله مروری

نویسندگان

1 دانشجوی دکتری، مهندسی مواد، دانشکده مهندسی مواد، دانشگاه صنعتی سهند تبریز، تبریز، ایران.

2 پژوهشگر پست دکتری، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران.

3 دانشیار، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران.

چکیده

در سال­های اخیر، استفاده از مواد دو بعدی به دلیل ویژگی­های منحصر به فرد از قبیل سطح ویژه بسیار بالا مورد توجه بسیاری از پژوهشگران قرار گرفته است. در بین مواد دو بعدی گوناگون مطرح شده، همانند گرافن و دی سولفیدها، مکسین­ها طیف جدیدی از مواد هستند که با استفاده از فازهای ماکس به دست می­آیند. این مواد معمولا دارای یک عنصر فلزی از فلزات عناصر واسطه، عموما تیتانیوم و یا کروم، به همراه کربن و یا نیتروژن و یک گروه عاملی همانند فلوئور، اکسیژن و یا هیدروکسیدی هستند. با در نظر گرفتن زمینه­های کاربردی وسیع این مواد که روز به روز نیز در حال افزایش است، و هم­چنین با توجه به نو و جدید بودن آن­ها، درک بهتر ساختار و روش های سنتز مکسین ها منجر به بهینه سازی، بهبود خواص آنها و استفاده مناسب تر از آنها در زمینه­های متفاوت می شود. همچنین با استفاده از فازهای ماکس متفاوت، می‌توان مکسین های بیشتری با ساختارهای منحصربه‌فرد سنتز کرد. در پژوهش پیش­رو سعی شده است که تاریخچه مختصری از این مواد بیان کرده و سپس به توضیح خواص، روش­های سنتز و کاربردهای این مواد پرداخته شود.

کلیدواژه‌ها


عنوان مقاله [English]

Two-Dimensional Mxene Structures: Comprehensive Review on Synthesis Methods & Applications

نویسندگان [English]

  • Atefeh Badr 1
  • Arvin Taghizadeh Tabrizi 2
  • Hossein Aghajani 3
1 Ph.D. Student, Faculty of Materials Engineering, Sahand University of Technology, Tabriz, Iran.
2 Post-Doctoral. Researcher, School of Metallurgy & Materials Engineering, Iran University of Science & Technology, Tehran, Iran.
3 Associate professor, School of Metallurgy & Materials Engineering, Iran University of Science & Technology, Tehran, Iran.
چکیده [English]

In recent years, utilizing two-dimensional materials has attracted much attention due to the exclusive features like high specific area and high surface activity. Among the diverse 2D materials like graphene and disulfides, Mxene is a newly developed material that could be achieved from MAX phases. These materials contain a metallic element mainly from transitional metals like titanium, molybdenum, niobium, or chromium, with carbon or nitrogen and groups like fluoride, oxygen, or hydroxide. Considering their unique properties, the range of applications of the Mxene is developing. Therefore, it is essential to understand better these newly developed two dimensional materials, their structures, synthesis methods and the parameters that could optimize the achieved properties. Furthermore, more Mxenes could be achieved by designing and synthesizing more MAX phases, which could be used in more applications. In this study, we tried to introduce a history of the Mxene and emphasize its features, synthesis methods, and application.

کلیدواژه‌ها [English]

  • Tow-Dimensional Materials
  • Mxene
  • Graphene
  • MAX Phases
  • Transitional Metals
  1. Ronchi, R.M., J.T. Arantes, and S.F. Santos, Synthesis, structure, properties and applications of MXenes: Current status and perspectives. Ceramics International, 2019. 45(15): p. 18167-18188.
  2. Coleman, J.N., et al., Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011. 331(6017): p. 568-571.
  3. Anasori, B. and Y. Gogotsi, Introduction to 2D transition metal carbides and nitrides (MXenes), in 2D Metal carbides and nitrides (MXenes). 2019, Springer. p. 3-12.
  4. Oyama, S.T., et al., Preparation and characterization of early transition metal carbides and nitrides. Industrial & engineering chemistry research, 1988. 27(9): p. 1639-1648.
  5. Levy, R. and M. Boudart, Platinum-like behavior of tungsten carbide in surface catalysis. science, 1973. 181(4099): p. 547-549.
  6. Alhabeb, M., et al., Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T x MXene). Chemistry of Materials, 2017. 29(18): p. 7633-7644.
  7. Zhang, C., et al., Two‐dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy & Environmental Materials, 2020. 3(1): p. 29-55.
  8. Khazaei, M., et al., Novel electronic and magnetic properties of two‐dimensional transition metal carbides and nitrides. Advanced Functional Materials, 2013. 23(17): p. 2185-2192.
  9. Zhao, Q.-N., et al., A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Metals, 2021. 40(6): p. 1459-1476.
  10. Li, X., et al., Applications of MXene (Ti 3 C 2 T x) in photocatalysis: a review. Materials Advances, 2021.
  11. Kim, S., et al., Application of a Ti3C2T X MXene-Coated Membrane for Removal of Selected Natural Organic Matter and Pharmaceuticals. ACS ES&T Water, 2021. 1(9): p. 2164-2173.
  12. Tuzluca, F.N., et al. Two Dimensional Ti 3 C 2 T x MXene Electrode For Supercapacitor Application. in 2019 IEEE Regional Symposium on Micro and Nanoelectronics (RSM). 2019. IEEE.
  13. Gogotsi, Y. and B. Anasori, The rise of MXenes. 2019, ACS Publications.
  14. Verger, L., et al., Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Current Opinion in Solid State and Materials Science, 2019. 23(3): p. 149-163.
  15. Li, T., et al., Fluorine‐free synthesis of high‐purity Ti3C2Tx (T= OH, O) via alkali treatment. Angewandte Chemie International Edition, 2018. 57(21): p. 6115-6119.
  16. Lipatov, A., et al., Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials, 2016. 2(12): p. 1600255.
  17. Zamhuri, A., et al., MXene in the lens of biomedical engineering: synthesis, applications and future outlook. Biomedical engineering online, 2021. 20(1): p. 1-24.
  18. Halim, J., et al., Synthesis of two-dimensional Nb1. 33C (MXene) with randomly distributed vacancies by etching of the quaternary solid solution (Nb2/3Sc1/3) 2AlC MAX phase. ACS Applied Nano Materials, 2018. 1(6): p. 2455-2460.
  19. Paul, J., et al., Computational methods for 2D materials: discovery, property characterization, and application design. Journal of Physics: Condensed Matter, 2017. 29(47): p. 473001.
  20. Tan, T.L., et al., High-throughput survey of ordering configurations in MXene alloys across compositions and temperatures. ACS nano, 2017. 11(5): p. 4407-4418.
  21. Meshkian, R., et al., W‐based atomic laminates and their 2D derivative W1. 33C MXene with vacancy ordering. Advanced Materials, 2018. 30(21): p. 1706409.
  22. Tao, Q., et al., Two-dimensional Mo 1.33 C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nature communications, 2017. 8(1): p. 1-7.
  23. Zhou, J., et al., Two-Dimensional Hydroxyl-Functionalized and Carbon-Deficient Scandium Carbide, ScC x OH, a Direct Band Gap Semiconductor. ACS nano, 2019. 13(2): p. 1195-1203.
  24. Qin, Y., et al., Structural, mechanical and electronic properties of two-dimensional chlorine-terminated transition metal carbides and nitrides. Journal of Physics: Condensed Matter, 2020. 32(13): p. 135302.
  25. Hong, W., et al., Double transition-metal MXenes: Atomistic design of two-dimensional carbides and nitrides. MRS Bulletin, 2020. 45(10): p. 850-861.
  26. Anasori, B., et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS nano, 2015. 9(10): p. 9507-9516.
  27. Shein, I. and A. Ivanovskii, Planar nano-block structures Tin+ 1Al0. 5Cn and Tin+ 1Cn (n= 1, and 2) from MAX phases: Structural, electronic properties and relative stability from first principles calculations. Superlattices and microstructures, 2012. 52(2): p. 147-157.
  28. Pang, J., et al., Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019. 48(1): p. 72-133.
  29. Persson, I., et al., On the organization and thermal behavior of functional groups on Ti3C2 MXene surfaces in vacuum. 2D Materials, 2017. 5(1): p. 015002.
  30. Harris, K.J., et al., Direct measurement of surface termination groups and their connectivity in the 2D MXene V2CT x using NMR spectroscopy. The Journal of Physical Chemistry C, 2015. 119(24): p. 13713-13720.
  31. Persson, I., et al., 2D transition metal carbides (MXenes) for carbon capture. Advanced Materials, 2019. 31(2): p. 1805472.
  32. Ghidiu, M., et al., Conductive two-dimensional titanium carbide ‘clay’with high volumetric capacitance. Nature, 2014. 516(7529): p. 78-81.
  33. Yockell-Lelièvre, H., F. Lussier, and J.-F. Masson, Influence of the particle shape and density of self-assembled gold nanoparticle sensors on LSPR and SERS. The Journal of Physical Chemistry C, 2015. 119(51): p. 28577-28585.
  34. Muckley, E.S., M. Naguib, and I.N. Ivanov, Multi-modal, ultrasensitive, wide-range humidity sensing with Ti 3 C 2 film. Nanoscale, 2018. 10(46): p. 21689-21695.
  35. Muckley, E.S., et al., Multimodality of structural, electrical, and gravimetric responses of intercalated MXenes to water. ACS nano, 2017. 11(11): p. 11118-11126.
  36. Eklund, P., M. Beckers, and U. Jansson, H. Högberg, L. Hultman. Thin Solid Films, 2010. 518: p. 18511878.
  37. Barsoum, M., A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem, 2000. 28: p. 201.
  38. Barsoum, M.W. and M. Radovic, Elastic and mechanical properties of the MAX phases. Annual review of materials research, 2011. 41: p. 195-227.
  39. Xin, M., et al., MXenes and their applications in wearable sensors. Frontiers in chemistry, 2020. 8: p. 297.
  40. Yang, J., et al., Stability and electronic properties of sulfur terminated two-dimensional early transition metal carbides and nitrides (MXene). Computational Materials Science, 2018. 153: p. 303-308.
  41. Zhang, S.-Z., et al., First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x (OH) 2x (M= Ti, V; X= C, N). Acta Physico-Chimica Sinica, 2017. 33(10): p. 2022-2028.
  42. Meshkian, R., et al., Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scripta Materialia, 2015. 108: p. 147-150.
  43. Zhou, J., et al., A two‐dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angewandte Chemie International Edition, 2016. 55(16): p. 5008-5013.
  44. Zhou, J., et al., Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS nano, 2017. 11(4): p. 3841-3850.
  45. Liao, Y., et al., 2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts. Applied Catalysis B: Environmental, 2020. 273: p. 119054.
  46. Naguib, M., et al., Two-dimensional transition metal carbides. ACS nano, 2012. 6(2): p. 1322-1331.
  47. Suzuki, M., I.S. Suzuki, and J. Walter, Magnetism and superconductivity in M c Ta 2 S 2 C (M= Fe, Co, Ni, and Cu). Physical Review B, 2005. 71(22): p. 224407.
  48. Boller, H. Some Aspects of the Intercalation Chemistry of the Niobium and Tantalum Carbide Chalcogenides Nb2S2S, Ta2S2C and Ta2Se2C. in Solid State Phenomena. 2011. Trans Tech Publ.
  49. Hantanasirisakul, K. and Y. Gogotsi, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Advanced materials, 2018. 30(52): p. 1804779.
  50. Sinha, A., Dhanjai; Zhao, HM; Huang, YJ; Lu, XB; Chen, JP; Jain, R. MXene: An emerging material for sensing and biosensing. TrAC, Trends Anal. Chem, 2018. 105: p. 424-435.
  51. Sarikurt, S., et al., The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers. Nanoscale, 2018. 10(18): p. 8859-8868.
  52. Tang, X., et al., 2D metal carbides and nitrides (MXenes) as high‐performance electrode materials for Lithium‐based batteries. Advanced Energy Materials, 2018. 8(33): p. 1801897.
  53. Xie, Y. and P. Kent, Hybrid density functional study of structural and electronic properties of functionalized Ti n+ 1 X n (X= C, N) monolayers. Physical Review B, 2013. 87(23): p. 235441.
  54. Khazaei, M., et al., OH-terminated two-dimensional transition metal carbides and nitrides as ultralow work function materials. Physical Review B, 2015. 92(7): p. 075411.
  55. Fu, Z., et al., Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Physical Review B, 2016. 94(10): p. 104103.
  56. Peng, Q., et al., Unique lead adsorption behavior of activated hydroxyl group in two-dimensional titanium carbide. Journal of the American Chemical Society, 2014. 136(11): p. 4113-4116.
  57. Kurtoglu, M., et al., First principles study of two-dimensional early transition metal carbides. Mrs Communications, 2012. 2(4): p. 133-137.
  58. Borysiuk, V.N., V.N. Mochalin, and Y. Gogotsi, Bending rigidity of two-dimensional titanium carbide (MXene) nanoribbons: A molecular dynamics study. Computational Materials Science, 2018. 143: p. 418-424.
  59. Borysiuk, V.N., V.N. Mochalin, and Y. Gogotsi, Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+ 1Cn (MXenes). Nanotechnology, 2015. 26(26): p. 265705.
  60. Plummer, G., et al., Nanoindentation of monolayer Tin+ 1CnTx MXenes via atomistic simulations: The role of composition and defects on strength. Computational Materials Science, 2019. 157: p. 168-174.
  61. Lipatov, A., et al., Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Science advances, 2018. 4(6): p. eaat0491.
  62. Luo, K., et al., First-principles study on the electrical and thermal properties of the semiconducting Sc 3 (CN) F 2 MXene. RSC advances, 2018. 8(40): p. 22452-22459.
  63. Khazaei, M., et al., Electronic properties and applications of MXenes: a theoretical review. Journal of Materials Chemistry C, 2017. 5(10): p. 2488-2503.
  64. Wu, F., et al., Theoretical understanding of magnetic and electronic structures of Ti3C2 monolayer and its derivatives. Solid State Communications, 2015. 222: p. 9-13.
  65. Shein, I. and A. Ivanovskii, Graphene-like nanocarbides and nanonitrides of d metals (MXenes): synthesis, properties and simulation, Micro Nano Lett. 8 (2013) 59–62. 2012.
  66. Maleski, K., et al., Size-dependent physical and electrochemical properties of two-dimensional MXene flakes. ACS applied materials & interfaces, 2018. 10(29): p. 24491-24498.
  67. Ying, G., et al., Conductive transparent V2CTx (MXene) films. FlatChem, 2018. 8: p. 25-30.
  68. Zhang, C., et al., Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Advanced materials, 2017. 29(36): p. 1702678.
  69. Berdiyorov, G., Optical properties of functionalized Ti3C2T2 (T= F, O, OH) MXene: First-principles calculations. Aip Advances, 2016. 6(5): p. 055105.
  70. Huang, K., et al., Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chemical Society Reviews, 2018. 47(14): p. 5109-5124.
  71. von Treifeldt, J.E., et al., The effect of Ti3AlC2 MAX phase synthetic history on the structure and electrochemical properties of resultant Ti3C2 MXenes. Materials & Design, 2021. 199: p. 109403.
  72. Wang, Z., et al., TiC MXene High Energy Density Cathode for Lithium–Air Battery. Advanced Theory and Simulations, 2018. 1(9): p. 1800059.
  73. Jhon, Y.I., et al., Metallic MXene saturable absorber for femtosecond mode‐locked lasers. Advanced Materials, 2017. 29(40): p. 1702496.
  74. Persson, I., et al., Tailoring Structure, Composition, and Energy Storage Properties of MXenes from Selective Etching of In‐Plane, Chemically Ordered MAX Phases. Small, 2018. 14(17): p. 1703676.
  75. Etman, A.S., J. Halim, and J. Rosen, Mo1. 33CTz-Ti3C2Tz Mixed MXene Freestanding Films for Zinc‐ion Hybrid Supercapacitors. Materials Today Energy, 2021: p. 100878.
  76. Sang, X., et al., Atomic defects in monolayer titanium carbide (Ti3C2T x) MXene. ACS nano, 2016. 10(10): p. 9193-9200.
  77. Lind, H., et al., Hydrogen Evolution Reaction for Vacancy‐Ordered i‐MXenes and the Impact of Proton Absorption into the Vacancies. Advanced Sustainable Systems, 2021. 5(2): p. 2000158.
  78. Ying, G., et al., Transparent, conductive solution processed spincast 2d ti2ct x (mxene) films. Materials Research Letters, 2017. 5(6): p. 391-398.
  79. Ma, G., et al., Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere. Nature communications, 2021. 12(1): p. 1-6.
  80. Fatima, M., et al., Experimental and Computational Analysis of MnO2@ V2C-MXene for Enhanced Energy Storage. Nanomaterials, 2021. 11(7): p. 1707.
  81. Abdelmalak, M.N., MXenes: A new family of two-dimensional materials and its application as electrodes for Li-ion batteries. 2014: Drexel University.
  82. Halim, J., et al., Synthesis and characterization of 2D molybdenum carbide (MXene). Advanced Functional Materials, 2016. 26(18): p. 3118-3127.
  83. Halim, J., et al., Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 2014. 26(7): p. 2374-2381.
  84. Liu, G., et al., Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS applied materials & interfaces, 2017. 9(46): p. 40077-40086.
  85. Cao, M., et al., Room temperature oxidation of Ti3C2 MXene for supercapacitor electrodes. Journal of The Electrochemical Society, 2017. 164(14): p. A3933.
  86. Dong, Y., et al., Saturable absorption in 2D Ti3C2 MXene thin films for passive photonic diodes. Advanced Materials, 2018. 30(10): p. 1705714.
  87. Urbankowski, P., et al., Synthesis of two-dimensional titanium nitride Ti 4 N 3 (MXene). Nanoscale, 2016. 8(22): p. 11385-11391.
  88. Yang, J., et al., Two‐dimensional Nb‐based M4C3 solid solutions (MXenes). Journal of the American Ceramic Society, 2016. 99(2): p. 660-666.
  89. Ghidiu, M., et al., Synthesis and characterization of two-dimensional Nb 4 C 3 (MXene). Chemical communications, 2014. 50(67): p. 9517-9520.
  90. Zhao, S., et al., Flexible Nb4C3Tx Film with Large Interlayer Spacing for High‐Performance Supercapacitors. Advanced Functional Materials, 2020. 30(47): p. 2000815.
  91. Tan, Y., et al., Nb4C3Tx (MXene) as a new stable catalyst for the hydrogen evolution reaction. International Journal of Hydrogen Energy, 2021. 46(2): p. 1955-1966.
  92. Anasori, B., et al., Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horizons, 2016. 1(3): p. 227-234.
  93. Mashtalir, O., et al., Amine‐assisted delamination of Nb2C MXene for Li‐ion energy storage devices. Advanced Materials, 2015. 27(23): p. 3501-3506.
  94. Maughan, P.A., et al., Pillared Mo 2 TiC 2 MXene for high-power and long-life lithium and sodium-ion batteries. Nanoscale advances, 2021. 3(11): p. 3145-3158.
  95. Mendes, R.G., et al., In Situ N‐Doped Graphene and Mo Nanoribbon Formation from Mo2Ti2C3 MXene Monolayers. Small, 2020. 16(5): p. 1907115.
  96. Pinto, D., et al., Synthesis and electrochemical properties of 2D molybdenum vanadium carbides–solid solution MXenes. Journal of Materials Chemistry A, 2020. 8(18): p. 8957-8968.
  97. Verger, L., et al., MXenes: an introduction of their synthesis, select properties, and applications. Trends in chemistry, 2019. 1(7): p. 656-669.
  98. Shahzad, F., et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016. 353(6304): p. 1137-1140.
  99. Boota, M., et al., Pseudocapacitive electrodes produced by oxidant‐free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Advanced Materials, 2016. 28(7): p. 1517-1522.
  100. Huang, J., et al., Progress and biomedical applications of MXenes. Nano Select, 2021.