تاثیر دما بر سازوکار سنتز کاربید تیتانیم از محیط نمک یوتکتیک KCl-LiCl

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکترا، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

2 استاد، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

3 دانشجوی دکترا، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در تحقیق حاضر، ذرات کاربید تیتانیم با استفاده از نمک مذاب KCl-LiCl و واکنشگرهای تیتانیم عنصری و کربن سیاه سنتز شد. بررسی تاثیر دماهای oC 815، 880 و 950 بر سنتز کاربید تیتانیم با استفاده از آنالیز پراش پرتوی ایکس نشان داد ترکیب‏های مختلفی در حین گرمایش نمونه‏ها تشکیل می‏شود که از آن جمله می‏توان به اکسید تیتانیم، کلرید تیتانیم و کاربید تیتانیم غیرموازنه‏ای اشاره کرد. با توجه به آنالیز وزن سنجی گرمایی (Thermogravimetric analysis) از نمونه شامل پودر تیتانیم مشخص می‏شود اکسیداسیون بخشی از تیتانیم از دمای oC 557 حتی در محیط شامل گاز آرگون آغاز شده که امری اجتناب ناپذیر است. در حضور یون کلر و کربن، اکسید تیتانیم تشکیل شده احیا می‏شود و در نهایت در دمای oC 950 اثری از اکسید تیتانیم در الگوی پراش وجود ندارد. آنالیز کمی روی الگوهای پراش نشان می‏دهد که خلوص فاز کاربید تیتانیم سنتز شده بیش از 99 درصد است. کلرید تیتانیم به عنوان یک ترکیب میانی در دماهای بالا وجود ندارد. تصاویر میکروسکوپ الکترونی روبشی (Scanning electron microscopy) به همراه طیف سنجی پراش انرژی پرتوی ایکس (Energy dispersive X-ray spectroscopy) و همچنین الگوهای پراش نشان داد قبل از تشکیل کاربید تیتانیم موازنه‏ای ابتدا ترکیب غیرموازنه‏ای کاربید تیتانیم تشکیل می‏شود. بررسی تصویر میکروسکوپ الکترونی عبوری (Transmission electron microscopy) از محصول نهایی و مقایسه آن با شکل واکنشگرهای اولیه نشان داد که سازوکار سنتز به صورت رشد الگودار است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of temperature on TiC synthesis mechanism via eutectic KCl-LiCl salt medium

نویسندگان [English]

  • Hamed Nadimi 1
  • Mansour Soltanieh 2
  • Hossein Sarpoolaky 2
  • Nazanin Jalalian Karazmoudeh 3
1 PhD, School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran.
2 Professor, School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran.
3 PhD candidate, School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran.
چکیده [English]

In the present study, TiC particles were synthesized using KCl-LiCl molten salt and elemental Ti and carbon black reactants. The effect of three temperatures at 815, 880 and, 950 oC on the TiC synthesis using X-ray diffraction analysis showed that various compounds were formed during heating of the samples; such as TiO2, TiClx, and non-stoichiometric TiC. According to the thermogravimetric analysis (TG) from Ti powder, it was determined that oxidation of Ti from 557 oC was inevitable even in an environment containing argon gas. In the presence of chlorine ions and carbon, the formed TiO2 was reduced and, finally at 950 oC, there was no trace of TiO2 in the diffraction pattern. The quantitative analysis of diffraction patterns showed that the purity of the synthesized TiC phase was more than 99%. TiClx as an intermediate compound was not present at high temperatures. Scanning electron microscopy (SEM) images along with energy-dispersive X-ray spectroscopy (EDS) as well as diffraction patterns showed that before stoichiometric TiC formation, a non-stoichiometric TiC was formed. Examination of transmission electron microscopy (TEM) image from the final product and comparing with the reactants morphology showed that the synthesis mechanism was "template growth".

کلیدواژه‌ها [English]

  • Molten salt
  • TiC
  • Synthesis mechanism
  • Template growth
  • non-stoichiometric TiC
[1]- Yin SY, Feng CQ, Wu SJ, Liu HL, Ke BQ, Zhang KL, Chen DH. Molten Salt Synthesis of Sodium Lithium Titanium Oxide Anode Material for Lithium Ion Batteries. Journal of Alloys and Compounds. 2015 Sep 5; 642: 1–6.
[2] Hu Z, Huang J, Luo Y, Liu M, Li X, Yan M, Ye Z, Chen Z, Feng Z, Huang S. Wrinkled Ni-doped Mo2C coating on carbon fiber paper: An advanced electrocatalyst prepared by molten-salt method for hydrogen evolution reaction, Electrochimica Acta. 2019 Oct 1; 319: 293-301.
[3] Li M, Zhou D, Li CP, Zhao Z. Low Temperature Molten Salt Synthesis of YAG: Ce Spherical Powder and Its Thermally Stable Luminescent Properties after Post-Annealing Treatment. Materials Science in Semiconductor Processing. 2016 Mar 15; 44: 101–7.
[4] Liu D, Fu Q, Chu Y. Molten salt synthesis, formation mechanism, and oxidation behavior of nanocrystalline HfB2 powders. Journal of Advanced Ceramics. 2020 Feb 5; 9: 35-44.
 [5] Wang Y, Li Y, Ju W, Wang J, Yao H, Zhang L, Wang J, Li Z. Molten salt synthesis of water dispersible polymeric carbon nitride nanoseaweeds and their application as luminescent probes. Carbon. 2016 Jun; 102: 477-486.
[6] Liu X, Gong Y. Molten salt synthesis of samarium borides with controllable stoichiometry and morphology. Journal of Alloys and Compounds. 2021 Jun 25; 867: 159174.
[7] Xie W, Mobus G, Zhang S. Molten salt synthesis of silicon carbide nanorods using carbon nanotubes as templates. Journal of Materials Chemistry. 2011 Oct 14; 45: 18325-30.
[8] Liu X, Jiang J, Jia Y, Jin A, Chen X, Zhang F, Han H. p-Type CaFe2O4 semiconductor nanorods controllably synthesized by molten salt method. Journal of Energy Chemistry. 2016 May; 25(3): 381-6.
 [9] Li X, Dong Z, Westwood A, Brown A, Zhang S, Brydson R, Li N, Rand B. Preparation of a Titanium Carbide Coating on Carbon Fibre Using a Molten Salt Method. Carbon. 2007 Feb; 46(2): 305–9.
[10] Zhang J, Li S, Lu C, Sun C, Pu S, Xue Q, Lin Y, Huang M. Anti-wear titanium carbide coating on low-carbon steel by thermo-reactive diffusion. Surface and Coatings Technology. 2019 Apr 25; 364: 265–72.
[11] Shi T, Guo L, Hao J, Chen C, Luo J, Guo Z. Microstructure and Wear Resistance of in-situ TiC Surface Composite Coating on Copper matrix Synthesized by SHS and Vacuum-Expendable Pattern Casting. Surface and Coatings Technology. 2017 Sep 15; 324: 288–97.
 [12] Jia H, Zhang Z, Qi Z, Liu G, Bian X. Formation of Nanocrystalline TiC from Titanium and Different Carbon Sources by Mechanical Alloying. Journal of Alloys and Compounds. 2009 Mar 20; 472(1-2): 97–103.
[13] Koc R, Folmer JS. Carbothermal Synthesis of Titanium Carbide Using Ultrafine Titania Powders. Journal of Materials Science. 1997 Jan; 32: 3101–3111.
[14] Zhang H, Li F, Jia Q, Ye G. Preparation of Titanium Carbide Powders by Sol–gel and Microwave Carbothermal Reduction Methods at Low Temperature. Journal of Sol-Gel Science and Technology.2008 Feb 16; 46: 217–22.
[15] Chen Y, Deng Y, Zhang H, Wang L, Ma J. A Novel and Simple Route to Synthesis Nanocrystalline Titanium Carbide via the Reaction of Titanium Dioxide and Different Carbon Source. Materials Sciences and Applications. 2011 Nov; 2(11): 1622–6.
[16] Gotoh Y, Fujimura K, Koike M, Ohkoshi Y, Nagura M, Akamatsu K, Deki S. Synthesis of Titanium Carbide from a Composite of TiO2 Nanoparticles / Methyl Cellulose by Carbothermal Reduction”, Materials Research Bulletin. 2001 Nov 1; 36(13-14): 2263–75.
[17] Razavi M, Rahimipour MR, Rajabi-zamani AH. Synthesis of Nanocrystalline TiC Powder from Impure Ti Chips via Mechanical Alloying. Journal of Alloys and Compounds. 2007 Jun 14; 436(1-2): 142–5.
[18] Liu X, Zhang S. Low-Temperature Preparation of Titanium Carbide Coatings on Graphite Flakes from Molten Salts. Journal of the American Ceramic society. 2008 Jan 17; 91(2): 667–70.
 [19] Liu X, Wang Z, Zhang S. Molten Salt Synthesis and Characterization of Titanium Carbide-Coated Graphite Flakes for Refractory Castable Applications. International Journal of Applied Ceramic Technology. 2011 Jul 5; 8(4): 911–9.
[20] Li X, Dong Z, Westwood A, Brown A, Brydson R, Walton A, Yuan G, Cui Z, Cong Y. Low-Temperature Preparation of Single Crystal Titanium Carbide Nanofibers in Molten Salts. Crystal Growth & Design. 2011 May 27; 11(7): 3122–9.
[21] Seifert HJ, Lukas HL, Petzow G. Thermodynamic optimization of the Ti-C system. International Journal of Materials Research. 1996; 17: 24-35.
[22] Zhu G, Wang W, Wang R, Zhao C, Pan W, Huang H, Du D, Wang D, Shu D, Dong A, Sun B, Jiang S, Pu Y. Formation Mechanism of Spherical TiC in Ni-Ti-C System during Combustion Synthesis. Materials. 2017 Aug 29; 10(9): 1–8.
[23] Yang LX, Zhang HL, Wang Y, Liu HJ, Zeng CL. A Novel and Simple Method for Large-Scale Synthesis of Nanosized NbC Powder by Disproportionation Reaction in Molten Salt. Ceramics International. 2019 Feb 15; 45(3): 3791–6.
[24] Nadimi H, Sarpoolaky H, Soltanieh M. Formation reaction kinetics of nanocrystalline TiC via molten LiCl–KCl applying shrinking core model. Ceramics International. 2021 May 1; 47(9): 12859–69.
[25] Nadimi H, Soltanieh M, Sarpoolaky H. The formation mechanism of nanocrystalline TiC from KCl–LiCl molten salt medium. Ceramics International. 2020 Aug 1; 46(11): 18725–33.