تاثیر تیتانیم و فرایند فورج چند جهته بر خواص مکانیکی برشی کامپوزیت درجای ZA22-4Si

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، گروه مهندسی مواد و متالورژی، دانشگاه بین‌المللی امام خمینی (ره) قزوین، قزوین، ایران.

2 دانشیار، گروه مهندسی مواد و متالورژی، دانشگاه بین‌المللی امام خمینی (ره) قزوین، قزوین، ایران.

چکیده

دستیابی به خواص مکانیکی مورد نظر در کامپوزیت­های درجا، نیازمند بهسازی مورفولوژی، کاهش ابعاد و بهبود شرایط توزیع ذرات تقویت­کننده­ای است که هنگام انجماد به صورت درجا در زمینه تشکیل می­شوند. هدف از انجام تحقیق حاضر بررسی تاثیر افزودن تیتانیم و فرایند فورج چند جهته (MDF)، به عنوان یک فرایند قابل اجرا در مقیاس صنعتی، بر ریزساختار و خواص مکانیکی برشی کامپوزیت ریختگی ZA22-4Si است. نتایج به­دست آمده نشان داد که بهسازی شیمیایی کامپوزیت توسط افزودن 2/0 درصد تیتانیم موجب تبدیل دانه­های دندریتی و بزرگ اولیه به دانه­های ریز و هم محور، کاهش ابعاد ذرات سیلیسیم اولیه (SiP) و تخلخل­ها و توزیع یکنواخت آن­ها در ساختار می­شود. بر اساس نتایج آنالیز تصویری، اندازه متوسط دانه­ها و ذرات SiP از حدود 750 و 25 میکرومتر به ترتیب به حدود 135 و 15 میکرومتر رسید. انجام فرآیند فورج در دمای 100 درجه سانتیگراد در تعداد پاس­های مختلف روی نمونه­ها، علاوه بر درهم آمیختن ساختار دندریتی اولیه، موجب کاهش ابعاد و توزیع یکنواخت­تر ذرات SiP در زمینه شد. بر اساس نتایج آنالیز تصویری، به ازای 2 و 5 پاس فورج، اندازه ذرات سیلیسیم اولیه به ترتیب به حدود 8 و 6 میکرومتر رسید. همچنین بر اساس نتایج آزمایش­ پانچ برشی، پس از MDF و افزودن تیتانیم، استحکام تسلیم برشی و استحکام برشی نهایی کامپوزیت ریختگی 5 پاس MDF شده از حدود 135 و 164 مگاپاسکال به ترتیب به حدود 92 و 130 مگاپاسکال کاهش و میزان جابجایی نرمال آن از 52/0 به حدود 72/0 افزایش یافت.  

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Ti and multidirectional forging on shear mechanical properties of in-situ ZA22-4Si composite

نویسندگان [English]

  • Davoud Yousefi 1
  • Reza Taghiabadi 2
  • Mohammad hossein Shaeri 2
1 M.Sc. Graduate, Department of Materials Science and Metallurgy, Imam Khomeini International University, Qazvin, Iran.
2 Associate Prof., Department of Materials Science and Metallurgy, Imam Khomeini International University, Qazvin, Iran.
چکیده [English]

Achieving the desired mechanical properties in in-situ composites is governed by morphological modification, refinement, and even distribution of reinforcement particles which are formed during their solidification. This study was aimed to investigate the effect of Ti addition and multidirectional forging (MDF), as an industrially practical process, on microstructure and shear mechanical properties of cast ZA22-4Si composite. The obtained results showed that chemical modification of composite through 0.2 wt. % Ti addition converted the coarse primary grains to the well-refined equiaxed grains and reduced the size of primary Si particle (SiP), and porosities and improved their distribution within the matrix. The image analysis results also indicated that the average size of grains and SiP particles reduced from 750 and 25 mm to about 135 and 15 mm, respectively. Applying MDF at 100 ° C at the different passes breaks the primary dendrite network, decreased the average size of SiP particles, and promoted their even distribution within the matrix. According to the image analysis results in 2- and 5-pass MDFed composite the average size of SiP particles reached to about 8 and 6 μm, respectively. The shear punch tests also indicated that the combined effect of MDF and Ti addition reduced the strength whilst improved the ductility of as-cast composite where the yield and tensile shear strength of 5-pass MDFed sample reduced from 135 and 164 MPa to about 92 and 130 MPa, respectively, and its normal displacement value improved from 0.52 to about 0.72.

کلیدواژه‌ها [English]

  • Zn-22Al alloy
  • Silicon
  • Titanium
  • Multidirectional forging
  • Shear mechanical properties
  1. Arif MAM, Omar MZ, Muhamad N, Syarif J, Kapranos P. Microstructural Evolution of Solid-solution-treated Zn–22Al in the Semisolid State. Journal of Materials Science & Technology. 2013;29(8):765–74. http://dx.doi.org/10.1016/j.jmst.2013.04.003
  2. Krajewski WK, Greer AL, Piwowarski G, Krajewski PK. Property enhancement by grain refinement of zinc-aluminium foundry alloys. IOP Conf Ser: Materials Science and Engineering. 2016;117:012004. http://dx.doi.org/10.1088/1757-899X/117/1/012004
  3. Prasad BK. Effects of Silicon Addition and Test Parameters on Sliding Wear Characteristics of Zinc-Based Alloy Containing 37.5% Aluminium. Materials Transactions, JIM. 1997;38(8):701–6. http://dx.doi.org/10.2320/matertrans1989.38.701
  4. Rajabi F, Taghiabadi R, Shaeri MH. Tribology of Si-rich TIG-deposited coatings on Zn–40Al–2Cu alloy. Surface Engineering. 2020;36(7):735–44. http://dx.doi.org/10.1080/02670844.2020.1728909
  5. Berent K, Pstruś J, Gancarz T. Thermal and Microstructure Characterization of Zn-Al-Si Alloys and Chemical Reaction with Cu Substrate During Spreading. Journal of Materials Engineering and Performance. 2016 28;25(8):3375–83. http://dx.doi.org/10.1007/s11665-016-2074-8
  6. Savaşkan T, Aydıner A. Effects of silicon content on the mechanical and tribological properties of monotectoid-based zinc–aluminium–silicon alloys. Wear. 2004;257(3–4):377–88. http://dx.doi.org/10.1016/j.wear.2004.01.007
  7. Yousefi D, Taghiabadi R, Shaeri MH, Ansarian I. Microstructural evolution and mechanical properties of multi-directionally forged SiP/ZA22 composite. Archives of Civil and Mechanical Engineering. 2020;20(4). http://dx.doi.org/10.1007/s43452-020-00124-z
  8. Yousefi D, Taghiabadi R, Shaeri MH, Abedinzadeh P. Enhancing the Mechanical Properties of Si Particle Reinforced ZA22 Composite by Ti–B Modification. International Journal of Metalcasting. 2020;15(1):206–15. http://dx.doi.org/10.1007/s40962-020-00447-w
  9. Pollard WA, Pickwick KM, Jubb JT, Packwood RH. The grain refinement of zinc-aluminum alloys by titanium. Canadian Metallurgical Quarterly. 1974;13(4):535–43. http://dx.doi.org/10.1179/cmq.1974.13.4.535
  10. Krajewski, W., Zak, P., Orava, J., Greer, A., & Krajewski, P. (2012). Structural Stability of the High-Aluminium Zinc Alloys Modified with Ti Addition. Archives of Foundry Engineering, 12(1). https://doi.org/10.2478/v10266-012-0012-2
  11. Sharath PC, Udupa KR, Kumar GVP. Effect of Multi Directional Forging on the Microstructure and Mechanical Properties of Zn-24 wt% Al-2 wt% Cu Alloy. Transactions on Indian Institute of Metals. 2016 29;70(1):89–96. http://dx.doi.org/10.1007/s12666-016-0863-2
  12. Ansarian I, Shaeri MH, Ebrahimi M, Minárik P, Bartha K. Microstructure evolution and mechanical behaviour of severely deformed pure titanium through multi directional forging. Journal of Alloys and Compounds. 2019;776:83–95. http://dx.doi.org/10.1016/j.jallcom.2018.10.196
  13. Sharath PC. Multi directional forging: an advanced deforming technique for severe plastic deformation. In Advanced Welding and Deforming, Elsevier, 2021, 529–556. https://doi.org/10.1016/b978-0-12-822049-8.00017-7
  14. Anjan BN, Preetham Kumar GV. Microstructure and mechanical properties of ZA27 based SiC reinforced composite processed by multi directional forging. Materials Research Express. 2018 31;5(10):106523. http://dx.doi.org/10.1088/2053-1591/aadb02
  15. Sharath PC, Udupa KR, Kumar GVP. Effect of multi directional forging on the microstructure and mechanical properties of Zn-24 wt% Al-2 wt% Cu alloy, Transactions of the Indian Institute of Metals, 2017, 70: 89-96.
  16. Neres DA Silva, Pereira PHR, Siqueira Correa EC, Paulino Aguilar MT, Cetlin PR. Microstructural evolution and mechanical properties in a Zn–Al–Cu–Mg hypoeutectic alloy processed by multi-directional forging at room temperature, Materials Science and Engineering: A, 2021, 801: 140420, https://doi.org/10.1016/j.msea.2020.140420.
  17. Yousefi D, Taghiabadi R, Shaeri MH. Effect of multi-pass multi-directional forging on tribological properties of Si-rich eutectoid ZA alloys. Transactions of Nonferrous Metals Society of China, 2021, 31(7), 2024-2038. https://doi.org/10.1016/s1003-6326(21)65635-2
  18. Taylor RP, McClain ST, Berry JT. Uncertainty analysis of metal-casting porosity measurements using Archimedes’ principle. International Journal of Cast Metals Research. 1999;11(4):247–57. http://dx.doi.org/10.1080/13640461.1999.11819281
  19. Pekguleryuz, M. O., Lin, S., Ozbakir, E., Temur, D., & Aliravci, C. (2010). Hot tear susceptibility of aluminium–silicon binary alloys. International Journal of Cast Metals Research, 23(5), 310–320. https://doi.org/10.1179/136404610x12738456167267
  20. Zhu X, Jiang W, Li M, Qiao H, Wu Y, Qin J, et al. The Effect of Mg Adding Order on the Liquid Structure and Solidified Microstructure of the Al-Si-Mg-P Alloy: An Experiment and ab Initio Study. Metals. 2014 ;5(1):40–51. http://dx.doi.org/10.3390/met5010040
  21. Wang F, Eskin D, Mi J, Connolley T, Lindsay J, Mounib M. A refining mechanism of primary Al3Ti intermetallic particles by ultrasonic treatment in the liquid state. Acta Materialia. 2016;116:354–63. http://dx.doi.org/10.1016/j.actamat.2016.06.056
  22. Kashyap KT, Chandrashekar T. Effects and mechanisms of grain refinement in aluminium alloys. Bulletin of Materials Science. 2001;24(4):345–53. http://dx.doi.org/10.1007/BF02708630
  23. Ding W, Xia T, Zhao W, Xu Y. Effect of Al–5Ti–C Master Alloy on the Microstructure and Mechanical Properties of Hypereutectic Al–20%Si Alloy. Materials. 2014;7(2):1188–200. http://dx.doi.org/10.3390/ma7021188
  24. Edalati K, Hashiguchi Y, Iwaoka H, Matsunaga H, Valiev RZ, Horita Z. Long-time stability of metals after severe plastic deformation: Softening and hardening by self-annealing versus thermal stability. Materials Science and Engineering: A. 2018;729:340–8. http://dx.doi.org/10.1016/j.msea.2018.05.079
  25. Lapovok R, Tóth LS, Molinari A, Estrin Y. Strain localization patterns under equal-channel angular pressing. Journal of the Mechanics and Physics of Solids. 2009;57(1):122–36. http://dx.doi.org/10.1016/j.jmps.2008.09.012
  26. Zhang NX, Kawasaki M, Huang Y, Langdon TG. The significance of self-annealing in two-phase alloys processed by high-pressure torsion. IOP Conf Ser: Materials Science and Engineering. 2014;63:012126. http://dx.doi.org/10.1088/1757-899X/63/1/012126
  27. Demirtas M, Purcek G, Yanar H, Zhang ZJ, Zhang ZF. Effect of different processes on lamellar-free ultrafine grain formation, room temperature superplasticity and fracture mode of Zn–22Al alloy. Journal of Alloys and Compounds. 2016;663:775–83. http://dx.doi.org/10.1016/j.jallcom.2015.12.142
  28. Gupta M, Ling S. Microstructure and mechanical properties of hypo/hyper-eutectic Al–Si alloys synthesized using a near-net shape forming technique. Journal of Alloys and Compounds. 1999;287(1–2):284–94. http://dx.doi.org/10.1016/S0925-8388(99)00062-6
  29. Ahn, S.-S., Pathan, S., Koo, J.-M., Baeg, C.-H., Jeong, C.-U., Son, H.-T., Kim, Y.-H., Lee, K.-H., & Hong, S.-J. (2018). Enhancement of the Mechanical Properties in Al–Si–Cu–Fe–Mg Alloys with Various Processing Parameters. Materials, 11(11), 2150. https://doi.org/10.3390/ma11112150
  30. Warmuzek M, Aluminium-Silicon Casting Alloys: Atlas of Microfractographs, Materials Park, OH, USA: ASM Int.; 2004.
  31. Lu D, Jiang Y, Guan G, Zhou R, Li Z, Zhou R. Refinement of primary Si in hypereutectic Al–Si alloy by electromagnetic stirring. Journal of Materials Processing Technology. 2007;189(1–3):13–8. http://dx.doi.org/10.1016/j.jmatprotec.2006.12.008