تشکیل پوشش آلومیناید نیکل اصلاح شده با سیلیسیم به روش فرآیند تک‌مرحله‌ای اکتیویته بالا - دما بالا بر روی سوپرآلیاژ پایه نیکل

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی مواد، دانشکده مواد و متالورژی دانشگاه سمنان

2 استادیار دانشکده مهندسی مواد دانشگاه سمنان

3 دانشیار دانشگاه مالک اشتر تهران

چکیده

در این پژوهش خواص پوشش آلومیناید نیکل اصلاح ‌شده با سیلیسیم بر روی سوپر آلیاژ اینکونل 100 با استفاده از آلومینایزینگ اکتیویته بالا - دما بالا تک مرحله‌ای بررسی شده است. این پوشش در زمان‌های 1 و 3 ساعت در دمای 1000 و ˚C1100 با استفاده از مخلوط پودری 5 و 10 درصد وزنی Al و Si به همراه آلومینا و فعال‌ساز NH4Cl ایجاد گردید. بررسی ریزساختار، توزیع فاز و ترکیب شیمیایی پوشش با استفاده از میکروسکوپ نوری و الکترونی روبشی مجهز به EDS/WDS و شناسایی فاز به وسیله XRD انجام گرفت. نتایج نشان داد با استفاده از فرآیند اکتیویته بالا-دما بالا تک مرحله‌ای رسوب Al و Si امکان‌پذیر است، به طوری که با کاهش Al و Si در مخلوط پودری از 10 به 5 درصد وزنی عمق منطقه غنی از سیلیسیم از 50 به μm20 کاهش می‌یابد. همچنین در مدت 1 ساعت با استفاده از مخلوط 10 درصد وزنی، فاز NiAl هایپراستوکیومتری با آلومینیم بیش از 50 درصد اتمی و در مدت 1 و 3 ساعت با مخلوط 5 درصد وزنی، فاز NiAl هیپواستوکیومتری با آلومینیم کمتر از 50 درصد اتمی تشکیل می‌گردد. نتایج میکروسختی نشان داد سختی پوشش از VHN 449 در زیرلایه تا VHN 1003 در منطقه نفوذ در‌هم در اثر حضور کاربیدهای سخت با ترکیب‌های پیچیده افزایش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Formation of Si-modified Nickel-Aluminide coating applied throughout a single step high activity-high temperature process on Nickel base superalloy

نویسندگان [English]

  • Ehsan Hosseinkhannejad 1
  • Behroz Ghasemi 2
  • Karim Zangenehmadar 3
  • Yousof Alizad Farzin 1
چکیده [English]

In this research properties of Single-Step High temperature-High activity Si-modified Nickel Aluminide coating on superalloy Inconel 100 at 1000 and 1100˚C have been investigated. Si-modified NiAl coating were prepared using 5 and 10 percent mass of Al and Si powders as well as Al2O3 and NH4Cl activators. Microstructure, phase distribution and coating composition of as-coated specimens were analyzed by using OM, SEM equipped with EDS/WDS and XRD. The results showed that co-precipitation of Al and Si using Single-Step High Temperature-High Activity process can be achieved. By reducing Al and Si amount in the pack from %10 to %5 in mass, the coating depth enriched by Si decrease from 50 to 20μm. In 1 hour, With %10 in mass pack hyperstoichiometric  NiAl phase with more than %50 at of Al was formed while after 1 and 3 h aluminizing with %5 in mass pack, hypostoichiometric NiAl phase with less than %50 at of Al was formed. Micro hardness test results have shown that hardness of formed surface coating varies from 449 VHN in substrate to 1003 VHN in interdiffusion zone duo to presence of various carbides with complex composition.

کلیدواژه‌ها [English]

  • pack cementation
  • Si-modified
  • Inconel 100 superalloy
  • high activity
  • Aluminizing

1-      Rafiee, H., Arabi, H., & Rastegari, S. (2010). Effects of temperature and Al-concentration on formation mechanism of an aluminide coating applied on superalloy IN738LC through a single step low activity gas diffusion process. Journal of Alloys and Compounds, 505(1), 206-212.

2-      Mohammadi, K., & Haghi, A. K. (2008). A study on characterization of pack-cemented aluminide coating on metals. Journal of materials processing technology, 201(1), 669-672.

3-      Pomeroy, M. J. (2005). Coatings for gas turbine materials and long term stability issues. Materials & design, 26(3), 223-231.

4-      Swadźba, R., Hetmańczyk, M., Wiedermann, J., Swadźba, L., Moskal, G., Witala, B., & Radwański, K. (2013). Microstructure degradation of simple, Pt-and Pt+ Pd-modified aluminide coatings on CMSX-4 superalloy under cyclic oxidation conditions. Surface and Coatings Technology, 215, 16-23.

5-      Das, D. K. (2013). Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys. Progress in Materials Science, 58(2), 151-182.

6-      Goward, G. W., & Cannon, L. W. (1988). Pack cementation coatings for superalloys: a review of history, theory, and practice. Journal of engineering for gas turbines and power, 110(1), 150-154.

7-      Kung, S. C., & Rapp, R. A. (1989). Analyses of the gaseous species in halide-activated cementation coating packs. Oxidation of metals, 32(1-2), 89-109.

8-      Kung, S. C., & Rapp, R. A. (1988). Kinetic study of aluminization of iron by using the pack cementation technique. Journal of the Electrochemical Society, 135(3), 731-741.

9-      Bianco, R., Rapp, R. A., & Jacobson, N. S. (1992). Volatile species in halide-activated diffusion coating packs. Oxidation of metals, 38(1-2), 33-43.

10-  Sivakumar, R., & Seigle, L. L. (1976). On the kinetics of the pack-aluminization Process. Metallurgical Transactions A, 7(8), 1073-1079.

11-  Wöllmer, S., Zaefferer, S., Göken, M., Mack, T., & Glatzel, U. (2003). Characterization of phases of aluminized nickel base superalloys. Surface and Coatings Technology, 167(1), 83-96.

12-  Xiang, Z. D., Burnell-Gray, J. S., & Datta, P. K. (2001). Aluminide coating formation on nickel-base superalloys by pack cementation process. Journal of Materials Science, 36(23), 5673-5682.

13-  Dutta, R. S., Majumdar, S., Limaye, P. K., Kulkarni, U. D., & Dey, G. K. (2011). Characterization of aluminides formed on superalloy 690 substrate. Transactions of the Indian Institute of Metals, 64(1-2), 31-36.

14-  Dey, G. K. (2003). Physical metallurgy of nickel aluminides. Sadhana, 28(1-2), 247-262.

15-  Zheng, Y., Cai, Y., Mo, L., & Yang, Z. (1991). Formation of Si-containing barrier in Al-Si coatings and its effect on protective capability of superalloy. Journal of materials engineering, 13(1), 39-46.

16-  Swadźba, L. (1994, May). The Influence of Silicon on the Structure and Properties of Diffusion Aluminide Coatings on Nickel Base Superalloys. In Materials Science Forum (Vol. 163, pp. 619-626).

17-  Xiang, Z. D., Rose, S. R., Datta, P. K., & Scheeffer, M. (2009). Steam oxidation resistance and thermal stability of chromium aluminide/chromium hybrid coating on alloy steels formed at low temperatures. Surface and Coatings Technology, 203(9), 1225-1230.

18-  Cao, G. H., Yao, P. P., Fu, C., & Russell, A. M. (2013). Microstructure and oxidation behavior of Al and Hf co-deposition coatings on nickel-based superalloys. Surface and Coatings Technology, 224, 57-61.

19-  Bai, B., Guo, H., Peng, H., Peng, L., & Gong, S. (2011). Cyclic oxidation and interdiffusion behavior of a NiAlDy/RuNiAl coating on a Ni-based single crystal superalloy. Corrosion Science, 53(9), 2721-2727.

20-  Zhao, Xiongsheng, Chungen Zhou. (2014). Effect of Y2O3 content in the pack on microstructure and hot corrosion resistance of Y-Co-modified aluminide coating. Journal of Corrosion Science, Vol 86, 223-230.

21-  Arabi, H., Rastegrari, S., Salehpour, Z., Bakhshi. (2008) Formation mechanism of silicon modified aluminide coating on a Ni-base superalloy. IUST International Journal of Engineering Science, 19(5), 39-44.

22-  Kircher, T. A., McMordie, B. G., & McCarter, A. (1994). Performance of a silicon-modified aluminide coating in high temperature hot corrosion test conditions. Surface and Coatings Technology, 68, 32-37.

23-  Brossard, J. M., Hierro, M. P., Sánchez, L., Bolívar, F. J., & Pérez, F. J. (2006). Thermodynamical analysis of Al and Si halide gaseous precursors in CVD. Review and approximation for deposition at moderate temperature in FBR-CVD process. Surface and Coatings Technology, 201(6), 2475-2483.

24-  Qiong, W. U., Yang, R. B., Wu, Y. X., Li, S. S., Yue, M. A., & Gong, S. K. (2011). A comparative study of four modified Al coatings on Ni 3 Al-based single crystal superalloy. Progress in Natural Science: Materials International, 21(6), 496-505.

25-  Wang, K. L., Chen, F. S., & Leu, G. S. (2003). The aluminizing and Al–Si codeposition on AISI HP alloy and the evaluation of their carburizing resistance. Materials Science and Engineering: A, 357(1), 27-38.

26-  Squillace, A., Bonetti, R., Archer, N. J., & Yeatman, J. A. (1999). The control of the composition and structure of aluminide layers formed by vapour aluminising. Surface and Coatings Technology, 120, 118-123.

27-  Xiang, Z. D., & Datta, P. K. (2003). Codeposition of Al and Si on nickel base superalloys by pack cementation process. Materials Science and Engineering: A, 356(1), 136-144.

28-  Shankar, S., & Seigle, L. L. (1978). Interdiffusion and intrinsic diffusion in the Ni AI (δ) phase of the Al-Ni system. Metallurgical transactions A, 9(10), 1467-1476.

29-  Bestor, M. A., Alfano, J. P., & Weaver, M. L. (2011). Influences of chromium and hafnium additions on the microstructures of β-nial coatings on superalloy substrates. Intermetallics, 19(11), 1693-1704.

30-  Wu, Y., Li, X. W., Song, G. M., Wang, Y. M., & Narita, T. (2010). Improvement of the Oxidation Resistance of the Single-Crystal Ni-Based TMS-82+ Superalloy by Ni–Al Coatings with/without the Diffusion Barrier. Oxidation of metals, 74(5-6), 287-303.

31-  Das, D. K., Joshi, S. V., & Singh, V. (1998). Evolution of aluminide coating microstructure on nickel-base cast superalloy CM-247 in a single-step high-activity aluminizing process. Metallurgical and Materials Transactions A, 29(8), 2173-2188.

32-  Xiang, Z. D., & Datta, P. K. (2003). Pack cementation process for the formation of refractory metal modified aluminide coatings on nickel-base superalloys. Journal of materials science, 38(18), 3721-3728.

33-  Goward, G. W., & Boone, D. H. (1971). Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys. Oxidation of metals, 3(5), 475-495.

34-  Sivakumar, R. (1982). An evaluation study of aluminide and chromoaluminide coatings on IN-100. Oxidation of Metals, 17(1-2), 27-41.