ارزیابی پروفیل مناسب در آزمایش بادکردگی آزاد لوله فولاد ضد زنگ 316 جهت تعیین خواص مواد لوله‌ای

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد،

2 استادیار،گروه مکانیک، دانشکده مهندسی، دانشگاه فردوسی مشهد

چکیده

هدف این مقاله ارزیابی خواص مواد لوله‌ای با استفاده از آزمایش هیدرولیکی بادکردگی آزاد لوله به همراه روشی تحلیلی است. برای انجام آزمایشات دستگاهی ساخته شد و پنج قطعه لوله‌ از جنس فولاد ضد زنگ 316 مورد آزمون قرار گرفتند فشار داخلی، کمترین ضخامت لوله در ناحیه‌ی بادکردگی و بیشترین ارتفاع بادکردگی برای هر پنج نمونه اندازه‌گیری شدند. با تخمین پروفیل بادکردگی به وسیله‌ی اس پی لاین[1] و محاسبه‌ی شعاع انحنای این پروفیل، و داشتن کمیت‌های اندازه‌گیری شده از آزمایش، برای هر نمونه‌ی آزمایش یک تنش موثر و کرنش موثر متناظر آن تعیین شدند. با استفاده از روش کمترین مربعات و رابطه‌ی تنش-کرنش لودویک[2] پارامترهای مجهول این رابطه و در نتیجه رابطه‌ی تنش-کرنش ماده‌ لوله‌ای فولاد ضد زنگ 316 به دست می‌آید. برای مقایسه با نتایج آزمون بادکردگی بر روی نمونه‌های بریده شده از جهت طولی لوله، آزمایش تست کشش انجام گردید. با استفاده از رفتار مکانیکی ماده‌ی لوله‌ای که از آزمایش بادکردگی لوله به‌دست آمد، شبیه‌سازی این آزمایش در آباکوس انجام شد و از نتایج آن برای صحه‌گذاری بر نتایج تجربی استفاده گردید. نتایج نشان داد که روش ارائه شده در این مقاله برای به‌دست آوردن رفتار مکانیکی مواد لوله‌ای از دقت بالایی برخوردار است.
 

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating a proper profile in free hydraulic bulging test on stainless steel type 316 for determination the tubular material properties

نویسندگان [English]

  • Behzad Fotovvati 1
  • Abdolrahman Jaami 2
چکیده [English]

This paper aims to evaluate the properties of tubular materials by hydraulic bulge tests combined with an analytical model. A setup is built for these tests and stainless steel type 316 tubes are used as specimens. Five specimens are tested in five different internal pressures and the tube thickness and bulge height are measured at the pole for each tube. A digitizer is used to measure the profile of the free bulge region and the result profiles are estimated by using Spline for each specimen. Using this profile and calculating its radius of curvature, and from above experimental data, one effective stress and effective strain can be derived for each specimen by the analytical method. Using these data points and the least square method, the constants of the effective stress-effective strain relation based on Ludwik equation for stainless steel type 316 tubular materials can be achieved. The flow stresses of the tubular materials by this approach are compared with those obtained by the tensile test. The samples are cut from the same tube used in bulge test. The finite element simulation of hydraulic bulge forming is carried out, using mechanical behavior of tubular materials and flow stresses obtained by the above-mentioned approach. The simulation results of forming pressures versus bulge heights and pole thicknesses are compared with the experimental results to validate the approach proposed in this paper.

کلیدواژه‌ها [English]

  • Hydraulic bulging test
  • Tubular material properties
  • Free bulging profile
  • spline

[1] Ahmetoglu, M., & Altan T. (2000). Tube hydroforming: state-of-the-art and future trends. Journal of Materials Processing Technology, 98, 25-33.

[2] Ahmetoglu, M., Sutter, K., Li, X.J., &  Altan, T. (2000).  Tube hydroforming: current research, applications and need for training. Journal of Materials Processing Technology, 98, 224-231.

[3] Boudeau, N., & Malécot, P. (2012). A simplified analytical model for post-processing experimental results from tube bulging test: theory, experimentations, simulations. International Journal of Mechanical Science, 65, 1-11.

[4] Dohmann, F., & Hartl, Ch. (1994). Liquid bulge forming as a flexible production method.Journal of Materials Processing Technology, 45, 377-382.

[5] Dohmann, F., & Hartl, Ch. (1996). Hydroforming a method to manufacture light-weight parts. .Journal of Materials Processing Technology, 60, 669-676.

[6] Fuchizawa, S., & Narazaki, M. (1993). Bulge test for determining stress–strain characteristics of thin tubes. Proceedings of Advanced Technology of Plasticity, 1, 488-493.

[7] Güner, A., Brosius, A., & Tekkaya, A. E. (2009). Analysis of the hydraulic bulge test with FEA concerning the accuracy of the determined flow curves. Key Engineering Materials,410, 439-447.

[8] Hea, Z., Yuan, Sh., Lin, Y., Wang, X., & Hu, W. (2014). Analytical model for tube hydro-bulging test, part I: Models for stress components and bulging zone profile. International Journal of Mechanical Sciences, 87, 297-306.

[9] Hwang, Y. M., & Lin, Y. K. (2007). Evaluation of flow stresses of tubular materials considering anisotropic effects by hydraulic bulge tests. Journal of Engineering Materials Technology, 129, 414-21.

[10] Hwang, Y. M., Lin, Y. K., & Altan, T. (2007). Evaluation of tubular materials by a hydraulic bulge test. International Journal of Machine Tools & Manufacture, 47, 343-351.

[11] Hwang, Y. M., & Wang, C. W. (2009). Flow stress evaluation of zinc copper and carbon steel tubes by hydraulic bulge tests considering their anisotropy. Journal of Material Processing Technology, 209, 4423-8.

[12] Imaninejad, M., Subhash, G., & Loukus, A. (2004). Influence of end-conditions during tube hydroforming of aluminum extrusions. International Journal of Mechanical Science, 46, 1195-212.

[13] Kaya, S., Altan, T., Groche, P., & Klöpsch, C. (2008). Determination of the flow stress of magnesium AZ31-O sheet elevated temperatures using hydraulic bulge test.International Journal of Machine Tools & Manufacture, 48, 550-577.

[14] Kuwabara, T. (2007). Advances in experiments on metal sheets and tubes in support of constitutive modeling and forming simulations.International Journal of Plasticity, 23, 385-419.

[15] Kuwabara, T., Yoshida, K., Narihara, K., & Takahashi, S. (2005). Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure. International Journal of Plasticity, 21, 101-17.

[16] Lianfa, Y., & Cheng, G. (2008). Determination of stress–strain relationship of tubular material with hydraulic bulge test.Thin-Walled Structures, 46, 147-154.

[17] Sokolowski, T., Gerke, K., Ahmetoglu, M., & Altan, T. (2000). Evaluation of tube formability and material characteristics: hydraulic bulge testing of tubes. Journal of Material Processing Technology, 98, 34-40.

[18] Woo, D. M., & Hawkes, P. J. (1968). Determination of stress/strain characteristics of tubular materials. Journal of the Institute of Metals,96, 357-9.