مروری بر بررسی روش‌های اندازه‌گیری ویسکوزیته مذاب فلزات

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مکانیک دانشگاه صنعتی اراک

2 دانشجوی کارشناسی ارشد گروه مهندسی مواد ومتالورژی دانشگاه تربیت مدرس

3 دانشیار گروه مهندسی مواد ومتالورژی دانشگاه تربیت مدرس

چکیده

در بسیاری از فرایندهای تولیدی که بر پایه ذوب و انجماد می باشد، مانند ریخته گری، اندازه گیری ویسکوزیته و پیش بینی سیالیت مذاب فلزات در دماها  و ترکیب های مختلف می تواند باعث بهبود فرآیند تولید و کاهش ضایعات شود. در این مقاله شماری از روشهایی که برای اندازه گیری ویسکوزیته مذاب ها و سیالات مورد استفاده قرار می گیرد، شرح داده شده اند. از این میان می توان به روشهای موئینگی، مخزن نوسانگر، بوته چرخان، صفحه نوسانگر، مخزن با سوراخ تخلیه و ... اشاره نمود. از جمله مدل هایی که برای تخمین ویسکوزیته عناصر و سیستم های چند جزئی و همچنین ارتباط ویسکوزیته با دما، استفاده شده اند عبارتند از مدل آرینیوس ، جبرا ، آندرید ، تئوری حجم آزاد هیلدبراند و ... . در نهایت مقایسه ای از روشهای مختلف اندازه گیری ویسکوزیته مذاب ها ارائه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

A Review on Investigation of different methods for measuring molten metal viscosity

نویسندگان [English]

  • S.Hossein Elahi 1
  • Hadi Abdi 2
  • Hmidreza Shahverdi 3
1
2
3
چکیده [English]

In many manufacturing process which are based on melting and solidification, like casting, measurement of viscosity and prediction of fluidity of molten metal in variant temperatures and alloy composition could improve quality of process and decreasing losses. In this paper different methods for measurement of viscosity like capillary method, oscillating vessel viscometer, falling body or counterbalanced sphere viscometer, oscillating plate method, rotating cylinder and … have been investigated. Arrhenius equation, Andrade treatment, Hildebrand’s free volume theory, Chhabra model and … are the models which were used for estimation of viscosity of metals and alloys and their relation with temperature. Finally comparison of different procedure for viscosity measurement of molten metals is presented.

کلیدواژه‌ها [English]

  • Viscosity
  • molten metal
  • viscosity measurement
  • models for viscosity measurement
  1. A.T. Dinsdale, P.N. Quested, "The Viscosity of Aluminum And its Alloys – A review of Data and Models", NPL Materials Centre, National Physical Laboratory, Teddington, UKTW11 0LW
  2. J. Banhart, "Manufacture, Characterization and Application of Cellular Metals and Metal foams", Progress in Materials Science, Vol. 46, 559–632, 2001.
  3. F. M. White, "Fluid Mechanics", Butterworth Heinemann , 1992
  4. N. Babcsan, J. Banhart, D. Leitlmeier, "Metal Foams–Manufacturing and Physics of Foaming", 2005
  5. T. Iida, R. I. L. Guthrie , "The Physical Properties of Liquid Metals" Clarendon Press, Oxford, 1988.
  6. S.I. Bakhtiyarov, R.A. Overfelt, "Measurement of Liquid Metal Viscosity By Rotational Technique", Elsevier Science Ltd., 1999.
  7. S.H. Han, C.G. Kang, J.H. Sung, "Investigation of viscosity properties for rheology forming of AM50A magnesium alloy", Journal of Materials Processing Technology, Vol.187–188, 335–338, 2007.
  8. A.W. Batchelor, G.W. Stachowiak, "Engineering Tribology", Butterworth Heinemann, 2001
  9. M.R. Hopkins, T.C. Toye, "The Determination of the Viscosity of Molten Metals", The British Iron and Steel Research Association, Swansea, 1950
  10.  J. F. HILLS, "A rotational viscometer employing a reference liquid", Journal Of Scientific Instruments, Vol. 35, 415, 1958.
  11.  R.N. Weltmann, P.W. Kuhns, "Effect of Shear Temperature on Viscosity in a Rotational Viscometer Measurement", Journal of Colloid Science, Vol. 7, Issue 3, 218-226, 1952.
  12.  G.W. Lower, W.C. Walker, A.C. Zettlemoyer, "The Rheology of Printing Inks. II. Temperature Control Studies in the Rotational Viscometer", Journal of Colloid Science, Vol. 8, Issue 1, 116-129, 1953.
  13.  G.F. Eveson, E.W. Hall, "A continuous-flow rotational viscometer for use with downward-settling suspensions", Journal of Scientific Instruments, Vol. 33, Issue 3,  110-112, 1956.
  14.  G.T. Helleloid, "On the Computation of Viscosity-Shear Rate Temperature Master Curves for Polymeric Liquids", Morehead Electronic Journal of Applicable Mathematics, Issue 1, 2001.
  15.  L. Dintenfass "Effect of Velocity Gradient on the Clotting Time of Blood and on the Consistency of Clots Formed in Vitro”, Journal of the American Heart Association", Vol. XVIII No. 4, 1966.
  16.  US Patent 4,499,753.
  17.  US Patent 5,317,908
  18.  K. Nakashima, T. Kawagoe, T. Ookado, K. Mori, "Viscosity of binary borate and ternary borosilicate Molten Slags, Fluxes and Salts" ’97 Conf. (Sydney, Australia, 5–8 Jan. 1997) (Warrendale, PA: Iron and Steel Society), p 215.
  19.  W.R.D. Jones, W.L. Bartlett, "The viscosity of aluminum and binary aluminum alloys", Journal Instituted of Metals, Vol. 81, 145–52, 1952-53.
  20.  Y. Shiraishi, S. Nagasaki, Yamashiro, "Spiked Parallel plate creep/rotation viscometer and its characteristics", ISIJ international    ISSN 0915-1559.
  21.  J.E. Hatch, "Aluminum: properties and physical metallurgy", Aluminum Association, American Society for Metals.
  22.  Y.I. Cho, J.P. Hartnett, "The Falling Ball Viscometer-A New Instrument for Viscoelastic Fluids", Letters in Heat and Mass Transfer, Vol. 6, 335-342, 1979.
  23.  S.J. Roach, H. Henein. "A New Method to Dynamically Measure the Surface Tension, Viscosity, and Density of Melts", International Journal of thermophysics, Vol. 3, No.4, 2000.
  24.   J.L. Sutterby, "Falling sphere viscometer", Process fundamentals Research Laboratory, the Dow Chemical Company, Midland, Michigan 48640, USA, 1973.
  25.  P.G. Morgan, "Notes on the falling sphere viscometer”, Chemical Engineering Science, Vol. 15, 144- 148, 1961.
  26.  D.Kanchanalakshana, A.J. Ghajar, "An Improved Falling Sphere Viscometer for Intermediate Concentration of Viscoelastic Fluids", INT. OCMM. Heat Mass Transfer, Vol. 13, 219-233, 1986.
  27.  N.A. Park, T. F. Irvine Jr., "The Falling Needle Viscometer: A New Technique for Viscosity Measurements, Warme Stoffuber-trag., Vol. 18, 201-206, 1984.
  28.  US Patent 5,203,203
  29.  US Patent 3,772,910
  30. T.A. Butcher, T. F. Irvine Jr., "Use of the falling ball viscometer to obtain flow curves for inelastic, non-newtonian fluids", Journal of Non-Newtonian Fluid Mechanics, Vol. 36, 51-70, 1990.
  31.  Y.I. Cho, J.P. Hartnett, W.Y. Lee, "Non-Newtonian viscosity measurements in the intermediate shear rate range with the falling-ball viscometer", Journal of Non-Newtonian Fluid Mechanics, Vol.15, Issue 1, 61-74, 1984.
  32.  S. Shin, D.Y. Keum, "Viscosity measurement of non-Newtonian fluid foods with a mass-detecting capillary viscometer", Journal of Food Engineering, Vol. 58, 5–10, 2003.
  33.  S. Hara, K. Inoue, Tanaka, "Viscosity of molten slags containing iron oxide Molten Slags, Fluxes and Salts", ’97 Conference (Sydney, Australia, 5–8 Jan. 1997) (Warrendale, PA: Iron and Steel Society) p 515 (ISBN 1-886362-14-9).
  34.  K. Funakoshi, A. Suzuki, H. Terasaki. "In situ viscosity measurements of albite melt under high pressure", Institute of Physics Publishing Journal of Physics: Condensed Matter. 2002.
  35.  S. H. Elahi, H. Adelnia, H.R. Shaverdi, "A simple accurate method for measuring viscosity of liquid metals at high temperatures", Journal of Rheology, Vol. 56, Issue 4, 941-954, 2012.
  36.  G. Barr, "Capillary Tube Viscometers Part II", Journal of Scientific Instruments, Vol. 1, Number 4, 1924.
  37.  US Patent 3,699,804
  38.  US Patent 4,685,328
  39.  US Patent 4,578,990
  40.  US Patent 4,793,174
  41.  G. D. Galvin, J. F. Hutton, B. Jones, "Development of a high-pressure, high-shear-rate capillary viscometer", Journal of Non-Newtonian Fluid Mechanics, Vol. 8, Issues 1-2, 11-28, 1981.
  42.  N. Ishii, A. Wakana, M. Kinoshita, "A Contribution to Viscometry; Hydrodynamical Study on Capillary Viscometry", 5th World Petroleum Congress, May 30 - June 5, 1959, New York, USA.
  43.  T. R. Cumby, "A Capillary Viscometer for the Study of the Rheological Properties of Slurries", J. agric. Engng Res. Vol. 25, 221-230, 1980.
  44.  A. W. Sisko, "Capillary Viscometer for Non-Newtonian Liquids", Journal of Colloid Science, Vol. 15, 89-96, 1960.
  45.  M. Shvestka, "Methods of Investigation Automatic Capillary Viscometer", Polymer Science U.S.S.R., Vol. 16, Issue 1, 264-268, 1974.
  46.  US Patent 6,322,524
  47.  J.C. Nieuwoudt, J.V. Sengers, J. Kestin, "On the theory of oscillating-cup viscometers", Physica A: Statistical and Theoretical Physics, Vol. 149, Issues 1-2, 107-122, 1988.
  48.  H. Yang, "Melting Behavior, Electrical Receptivity, Viscosity of FeSi Alloys at High Pressures: Implications for Outer Core Dynamics", Faculty of Graduate Studies, The University of Western Ontario London, Ontario August, 1999.
  49.  A. Knappworst, "A new method of high temperature viscometery by the method of oscillating hollow bodies", Z. Phys. Chem., 1995.
  50.  A.A.K. Ibrahim, A.M.I. Kabiel, " Experimental and theoretical investigations on the oscillating cylinder viscometer for Newtonian liquids", British Journal of Applied Physics, Vol. 11, Number 7, Issue 7, 283, 1960.
  51.  I. Elyukhina, G. Vyatkin, "Software for oscillating-cup viscometry: verification of data reasonableness and parametric identification of rheological model", Journal of Physics: Conference Series, Vol. 98, Part 2, Issue 2, 2008.
  52.  US Patent 3,772,262
  53.  B.S. Ashwin , T. Hagyard , I.C.B Saunders, T E Young, " Viscometers having damped torsional oscillation", Journal of Scientific Instruments, Vol. 37, Number 12, Issue 12, 480, 1960
  54.  S. Gruner, W. Hoyer, "A statistical approach to estimate the experimental uncertainty of viscosity data obtained by the oscillating cup technique", Journal of Alloys and Compounds, Vol. 480, Issue 2 629–633, 2009.
  55.  T.M. Bruton, "A high temperature oscillating cylinder viscometer", Journal of Physics E: Scientific Instruments, Vol. 8, Number 11, Issue 11, 906, 1975.
  56.  D. Tolbaru, A.M. Popescu, S. Zuca, "Error Analysis of the Oscillating Cup Method for Viscosity Measurements of Molten Salts", Presented at the EUCHEM Conference on Molten Salts and Ionic Liquids, Hammamet, Tunisia, September 16 –22, 2006.
  57. Y. Sato, K. Sugisawa, D. Aoki, T. Yamamura, "Viscosities of Fe–Ni, Fe–Co and Ni–Co binary melts", Measurement Science and Technology, Vol. 16, Number 2, 363, 2005.
  58.  Y. Sato, K. Sugisawa, D. Aoki, T. Yamamura, "Viscosity of molten Fe-Ni binary alloy", Fifteenth Symposium on Thermophysical Properties, Boulder, CO, USA, June 22 - 27, 2003.
  59.  Y. Ito, K. minami, A. Nagashima, "Viscosity of Liquid Lithium by an Oscillating-Cup Viscometer in the Temperature Range 464-923 K", International Journal Of Thermophysics, Vol. 10, No. 1, 173-182, 1989.
  60.  K. Mazuruk, C.H. Su, S.L. Lehoczky, F. Rosenberger, "Novel oscillating cup viscometer–application to molten HgTe and Hg0.8Cd0.2Te",  Journal of Applied Physics, Vol. 77, Issue 10, 5098, 1995.
  61.  D. Wang, R.A. Over felt, "Oscillating Cup Viscosity Measurements of Aluminum Alloys: A356 and 319". International Journal of Thermo physics. Vol. 23, Issue 4, 1063-1076, 2002.
  62. V. L. Shah, "Extension of the theory of the oscillating-disk viscometer for large boundary-layer thicknesses encountered at low pressures", Physica, Vol. 49, Issue 2, 217-228, 1970.
  63.  J.G Woodward, "A vibrating-plate viscometer", Journal of Colloid Science, Vol. 6, Issue 5, 481-491, 1951.
  64.  US Patent 5,710,374
  65.  J. Kestin, J.H. Whitelaw, "A relative determination of the viscosity of several gases by the oscillating disk method", Physica, Vol. 29, Issue 4, 335-356, 1963.
  66.  R. Dipippo, J. Kestin, J. H. Whitelaw, "A high-temperature oscillating-disk viscometer", Physica, Vol. 32, Issues 11-12, 2064-2080, 1966.
  67.  M. Hongo, "Viscosity of Argon and Argon-Ammonia Mixtures Under Pressures", The Review of Physical Chemistry of Japan, Vol. 48, Number 2, 63–71, 1979.
  68.  US Patent 5,372,034
  69.   S.J. Roach, H. Henein, Owens, "A new technique to measure dynamically the surface tension, viscosity and density of melts", Light Metals 2001.
  70. S.J. Roach, H. Henein, "A new method to dynamically measure the surface tension, viscosity, and density of melts", Metallurgical and Materials Transactions B, Vol. 36, Issue 5, 667-676, 2005.
  71.  V.N. Belonenko, "Role of bulk viscosity and acoustic parameters in tribological problems", Ultrasonics, Vol. 29, Issue 2, 101-118, 1991.
  72.  R.P. Chhabra, A. Tripathi, "A correlation for the viscosity of liquid metals”, High Temperature High Press., Vol. 25, 713-718, 1993.
  73.  Y. Sato, "Viscosity of molten silicon and the factors affecting measurement", Journal of Crystal Growth, Vol. 249, Issues 3-4, 404-415, 2003.