بررسی تاثیر مس بر ریزساختار و خواص مکانیکی بیوآلیاژ Zn-Cu

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

2 محقق پسادکتری، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

3 استاد، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران، تهران، ایران

چکیده

در این تحقیق به بررسی تاثیر مس بر ریزساختار و خواص مکانیکی بیوآلیاژZn-Cuپرداخته شده‌است.عملیات ترمومکانیکی اکستروژن به‌منظور بهبود ریزساختار و خواص مکانیکی بر آلیاژهای با درصدهای مختلف مس صورت گرفت. فرآیند اکستروژن با سرعت2 میلیمتر بر دقیقه و در دمای°C240 و با نسبت اکستروژن 5 به 1 انجام شد. به‌منظور بررسی تاثیر مس بر خواص کششی آلیاژ مذکور نظیر استحکام تسلیم، استحکام کشش و درصد ازدیاد طول نسبی، نمونه­های اکسترود شده تحت آزمایش کشش تک­محور در دمای اتاق قرار گرفتند. نتایج آزمایش کشش نشان داد که بیشترین مقدار استحکام تسلیم  MPa215، استحکام نهاییMPa 234 و ازدیاد طول نسبی% 46 مربوط به آلیاژ Zn-3.5Cu بوده است که معیارهای طراحی کلی برای استنت‌های قلبی عروقی را برآورده می‌کند. تصاویر ریز ساختار حاصل از میکروسکوپ الکترونی روبشی نشان داد که با افزایش غلظت مس، فازCuZn5 بیشتری رسوب کرده است. مطالعات ریزساختاری حاکی از آن است که با افزایش درصد مس توزیع فازثانویه در زمینه بیشتر شده و حین فرآیند اکسترود فازهای ثانویه خرد شده و در جهت اکسترود کشیده شده‌اند و همین امر سبب افزایش تنش تسلیم و استحکام کششی در آلیاژ با درصد مس بیشتر می‌شود.  

کلیدواژه‌ها


عنوان مقاله [English]

The effect of copper on the microstructure and mechanical properties of Bio Zn-Cu alloy

نویسندگان [English]

  • Mohammad Zamani 1
  • Fereshteh Hosseinabadi 2
  • Mohammad Reza Abutalebi 3
  • Seyed Hossein Seyedein 3
1 MSc, School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
2 Postdoctoral researcher, School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
3 Professor, School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Tehran, Iran
چکیده [English]

In this study, the effect of copper on the microstructure and mechanical properties of the Zn-xCu (x= 1,2 and 3.5 Wt.%) bioalloy were investigated. The extrusion was performed on Zn-xCu alloys with speed of 2 mm/min at a temperature of 240 °C to improve microstructure and mechanical properties. The extrusion ratio was considered to be 5 to 1. In order to investigate the effect of copper on the mechanical properties of this alloy such as yield strength, tensile strength and relative elongation percentage, the extruded specimens were subjected to uniaxial tensile test at room temperature. The results of tensile test showed that the highest yield strength, ultimate strength and elongation were obtained by Zn-3.5Cu alloy which is 215MPa, 234 MPa and 46%, respectively, which meets the general design criteria for cardiovascular stents. Scanning Electron Microscope images showed that as the Cu content increases, more CuZn5precipitates were formed. Microstructural studies show that with increasing the copper content, the secondary phase distribution in the matrix increases and during the extrusion process, the secondary phases are crushed and stretched in the extrusion direction, which increases the yield stress and tensile strength of the alloy with higher copper content.

کلیدواژه‌ها [English]

  • Zn-Cu alloy
  • copper content
  • extrusion
  • mechanical properties
  • cardiovascular stent
 [1]     Z. Tang, J. Niu,H. Huang,H. Zhang,J. Pei,J. Ou,G. Yuan., “Potential biodegradable Zn-Cu binary alloys developed for cardiovascularimplant applications,” J. Mech. Behav. Biomed. Mater., vol. 72, pp. 182–191, 2017.
[2]      X. Liu, J. Sun, Y. Yang, F. Zhou, Z. Pu, L. Li, Y. Zheng, “Microstructure, mechanical properties, in vitro degradation behavior and hemocompatibility of novel Zn--Mg--Sr alloys as biodegradable metals,” Mater. Lett., vol. 162, pp. 242–245, 2016.
[3]      P. K. Bowen, E. R ShearierS. Zhao,S.  Zhao,R. J. Guillory II,F.  Zhao,J. Goldman,J.  W. Drelich “Biodegradable metals for cardiovascular stents: from clinical concerns to recent Zn-Alloys,” Adv. Healthc. Mater., vol. 5, no. 10, pp. 1121–1140, 2016.
[4]        E.-L. Zhang, S. Fu, R-X Wang, H-X Li, Y. Liu, Z-Q Ma, G-K Liu,C-Sh Zhu, G-WQin
D-F Chen., “Role of Cu element in biomedical metal alloy design,” Rare Met., vol. 38, no. 6, pp. 476–494, 2019.
[5]      G. Li  H. YangY. Zheng, X-H Chen, J-A Yang, D. Zhu, L. Ruan, K. Takashima., “Challenges in the use of zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility,” Acta Biomater., vol. 97, pp. 23–45, 2019.
[6]      P. Li, W. Zhang, J. Dai, A-B Xepapadeas, E. Schweizer,D. Alexander,L. Scheideler,C. Zhou,H. Zhang,G. Wan,J. Geis-Gerstorfera, “Investigation of zinc-copper alloys as potential materials for craniomaxillofacial osteosynthesis implants,” Mater. Sci. Eng. C, vol. 103, p. 109826, 2019.
[7]      Y. F. Zheng, X. N. Gu, and F. Witte, “Biodegradable metals,” Mater. Sci. Eng. R Reports, vol. 77, pp. 1–34, 2014.
[8]      H. Yang et al., “Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model,” Biomaterials, vol. 145, pp. 92–105, 2017.
 [9]     H. Tapiero and K. D. Tew, “Trace elements in human physiology and pathology: zinc and metallothioneins,” Biomed. \& Pharmacother., vol. 57, no. 9, pp. 399–411, 2003.
 [10]   H. Yang, C. Wang, C.  Liu, H. Chen, Y. Wu, J. Han, Z.  Jia“In vitro and in vivo studies on zinc-hydroxyapatite composites as novel biodegradable metal matrix composite for orthopedic applications,” Acta Biomater., vol. 71, pp. 200–214, 2018.
[11]    G. Li, H. YangY. Zheng, X-H Chen, J-A Yang, D. Zhu, L. Ruan, K. Takashima., “Challenges in the use of zinc and its alloys as biodegradable metals: perspective from biomechanical compatibility,” Acta Biomater., vol. 97, pp. 23–45, 2019.
 [12]   S. Tubek, “Role of zinc in regulation of arterial blood pressure and in the etiopathogenesis of arterial hypertension,” Biol. Trace Elem. Res., vol. 117, no. 1, pp. 39–51, 2007.
[13]    B. Turan, “Zinc-induced changes in ionic currents of cardiomyocytes,” Biol. Trace Elem. Res., vol. 94, no. 1, pp. 49–59, 2003.
[14]    L. Rink and P. Gabriel, “Extracellular and immunological actions of zinc,” Zinc Biochem. Physiol. Homeost., pp. 181–197, 2001.
[15]    X. Tong,  D. Zhang, X. Zhang, Y. Su, Z. Shi, K. Wang, J. Lin, Y. Li, J. Lin, C. Wen., “Microstructure, mechanical properties, biocompatibility, and in vitro corrosion and degradation behavior of a new Zn--5Ge alloy for biodegradable implant materials,” Acta Biomater., vol. 82, pp. 197–204, 2018.
[16]    P. K. Bowen, J. Drelich, and J. Goldman, “Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents,” Adv. Mater., vol. 25, no. 18, pp. 2577–2582, 2013.
[17]    D. Apelian, M. Paliwal, and D. C. Herrschaft, “Casting with zinc alloys,” Jom, vol. 33, no. 11, pp. 12–20, 1981.
[18]    M. Gelfi, E. Bontempi, A. Pola, R. Roberti, D. Rollez, and L. E. Depero, “Microstructural and mechanical properties of zinc die casting alloys,” Adv. Eng. Mater., vol. 6, no. 10, pp. 818–822, 2004
[19]    M. Peuster, C. Hesse, T. Schloo, C. Fink, P. Beerbaum, and C. von Schnakenburg, “Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta,” Biomaterials, vol. 27, no. 28, pp. 4955–4962, 2006.
 [20]   S. awomir Tubek, “Selected zinc metabolism parameters in women with arterial hypotension,” Biol. Trace Elem. Res., vol. 116, pp. 73–79, 2007.
[21]    W. Xiang, L. Hong-mei, L. Xin-lin, L. Li, and Z. Yu-feng, “Effect of cooling rate and composition on microstructures and properties of Zn-Mg alloys,” Trans. Nonferrous Met. Soc. China, vol. 17, no. December, p. China Nonferrous Met Ind Assoc; Cent S Univ, 2007.
[22]    H. Gong, K. Wang, R. Strich, and J. G. Zhou, “In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn--Mg alloy,” J. Biomed. Mater. Res. Part B Appl. Biomater., vol. 103, no. 8, pp. 1632–1640, 2015.
[23]    Z. P. F. Chmelík, Z. Trojanová, P. Lukáč, “No TitleAcoustic emission from zinc deformed at room temperature Part I The influence of strain rate on deformation behaviour and acoustic emission in pure zinc, Journal of Materials Science Letters,” vol. 12, no. (14), pp. 1086-1087.
[24]    E. Mostaed,  M. Sikora-JasinskaA. Mostaed, S.Loffredo,A.G.Demir,B.Previtali,D.Mantovani,R.Beanland,M.Vedani., “Novel Zn-based alloys for biodegradable stent applications: design, development and in vitro degradation,” J. Mech. Behav. Biomed. Mater., vol. 60, pp. 581–602, 2016.
[25]    C. Shen, X. Liu, B. Fan, P. Lan, F. Zhou, X. Li, H. Wang, X. XiaoL. Li,  Sh. Zhao,   Z.  Guo,Z.  Pu and  Yufeng Zheng., “Mechanical properties, in vitro degradation behavior, hemocompatibility and cytotoxicity evaluation of Zn--1.2 Mg alloy for biodegradable implants,” RSC Adv., vol. 6, no. 89, pp. 86410–86419, 2016.