بهینه‏سازی شرایط لیچینگ غبار کوره قوس الکتریکی به منظور دستیابی به بیشینه بازیابی نسبت آهن به کلسیم در محلول لیچینگ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناس ارشد، دانشکده مهندسی متالورژی و مواد، دانشکدگان فنی، دانشگاه تهران، تهران، ایران.

2 دانشیار، دانشکده مهندسی متالورژی و مواد، دانشکدگان‏ فنی، دانشگاه تهران، تهران، ایران.

3 استاد، دانشکده مهندسی متالورژی و مواد، دانشکدگان ‏فنی، دانشگاه تهران، تهران، ایران.

چکیده

در این تحقیق، هدف دستیابی به محلولی غنی از آهن، کلسیم و منیزیم از یکی از منابع ارزان ثانویه یعنی غبار کوره فولادسازی قوس الکتریکی است. مشخصه یابی ماده اولیه با روش‏های طیف سنجی فلورسانس اشعه ایکس، طیف سنجی تفرقی اشعه ایکس، پلاسمای جفت شونده القایی و میکروسکوپ الکترونی روبشی گسیل میدانی انجام شد. کلسیم و آهن دو عنصر اصلی تشکیل دهنده غبار کوره قوس الکتریکی بوده و شرایط لیچینگ آن ها در دما و غلظت های مختلف سولفوریک اسید متفاوت است. از آنجایی که مقدار کلسیم در ترکیب شیمیایی اولیه غبار کوره قوس الکتریکی بسیار بیشتر از آهن است، لازم است ابتدا مقداری از کلسیم به همراه سایر عناصر نامطلوب حذف شود. برای به حداکثر رساندن نسبت کل بازیابی آهن به کلسیم F/C)) و ارزیابی تاثیر غلظت سولفوریک اسید و دما، از روش سطح پاسخ به عنوان طراحی آزمایش استفاده شد. بهترین مقدار بازیابی آهن از غبار طی یک فرایند لیچینگ دو مرحله ای به ترتیب با استفاده از محلول 1/0 و 1 مولار سولفوریک اسید (یک ساعت، دمای 85 درجه سانتی گراد و نسبت محلول به جامد 50) انجام شد. در این حالت، مقدار F/C تقریبا برابر با 4 بود که این به نسبت ترکیب شیمیایی ابتدایی غبار کوره قوس الکتریکی، هشت برابر بیشتر است.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of leaching process of electric arc furnace dust to obtain the maximum recovery of Fe/Ca ratio in leaching solution

نویسندگان [English]

  • Mahdi Kamali Najafabadi 1
  • Saeed Sheibani 2
  • Abolghasem Ataie 3
1 M.Sc., School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
2 Associate Professor, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
3 Professor, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
چکیده [English]

This work aimed to obtain a solution rich in iron, calcium, and magnesium from electric arc furnace dust of steelmaking. Raw materials characterization was performed by several techniques, including X-ray fluorescence (XRF), X-ray diffraction (XRD), inductively coupled plasma-optical emission spectrometry (ICP-OES), and field emission scanning electron microscopy (FESEM). Calcium and iron are the two main constituents of arc furnace dust, but their dissolution conditions vary at different temperatures and concentrations of sulfuric acid. Since the amount of calcium in the initial chemical composition of the electric arc furnace dust is much higher than iron, it is necessary to remove some calcium along with other undesirable elements. The response surface methodology (RSM) was used as the experimental design to maximize the total ratio of iron to calcium recovery (F/C) and evaluate the effective parameters, including sulfuric acid concentration and temperature. Recovery of iron from electric arc furnace dust reached to its maximum value via a two-stage leaching process: 0.1 M and 1 M H2SO4, respectively, in 1 hour at the temperature of 85 °C and liquid to solid ratio of 50. Under the above experimental conditions, the F/C ratio was almost 4, which is eight times higher than that of in the initial electric arc furnace dust.

کلیدواژه‌ها [English]

  • Recycling
  • Iron
  • Calcium
  • Design of Experiment
  • Leaching
  • Electric Arc Furnace Dust
[1]        B. Das, S. Prakash, P. Reddy, and V. Misra, "An overview of utilization of slag and sludge from steel industries," Resources, conservation and recycling, vol. 50, pp. 40-57, 2007.
[2]        P. Oustadakis, P. Tsakiridis, A. Katsiapi, and S. Agatzini-Leonardou, "Hydrometallurgical process for zinc recovery from electric arc furnace dust (EAFD): Part I: Characterization and leaching by diluted sulphuric acid," Journal of hazardous materials, vol. 179, pp. 1-7, 2010.
[3]        م. معارف وند, س. شیبانی, and ف. رشچی, "بهینه‏ سازی و مطالعه سینتیکی فرآیند حل‏سازی در بازیابی گالیم از LED مستعمل," مهندسی متالورژی, vol. 23, pp. 118-130, 2020.
[4]        M. Kamali, S. Sheibani, and A. Ataie, "Effect of calcination temperature on photocatalytic activity of magnetic Fe-based composites recycled from hazardous EAF dust," Materials Research Bulletin, p. 111688, 2021.
[5]        M. Kamali, S. Sheibani, and A. Ataie, "Magnetic MgFe2O4–CaFe2O4 S-scheme photocatalyst prepared from recycling of electric arc furnace dust," Journal of Environmental Management, vol. 290, p. 112609, 2021.
[6]        T. Havlík, B. V. e Souza, A. M. Bernardes, I. A. H. Schneider, and A. Miškufová, "Hydrometallurgical processing of carbon steel EAF dust," Journal of Hazardous Materials, vol. 135, pp. 311-318, 2006.
[7]        T. Havlik, M. Turzakova, S. Stopic, and B. Friedrich, "Atmospheric leaching of EAF dust with diluted sulphuric acid," Hydrometallurgy, vol. 77, pp. 41-50, 2005.
[8]        F. Kukurugya, T. Vindt, and T. Havlík, "Behavior of zinc, iron and calcium from electric arc furnace (EAF) dust in hydrometallurgical processing in sulfuric acid solutions: Thermodynamic and kinetic aspects," Hydrometallurgy, vol. 154, pp. 20-32, 2015.
[9]        M. Al-Harahsheh, J. Al-Nu’airat, A. Al-Otoom, H. Al-jabali, and M. Al-zoubi, "Treatments of electric arc furnace dust and halogenated plastic wastes: A review," Journal of Environmental Chemical Engineering, vol. 7, p. 102856, 2019.
[10]      L. K. Wang, Y.-T. Hung, and N. K. Shammas, Handbook of advanced industrial and hazardous wastes treatment: CRC press, 2009.
[11]      M. Alizadeh and M. Momeni, "The effect of the scrap/DRI ratio on the specification of the EAF dust and its influence on mechanical properties of the concrete treated by its dust," Construction and Building Materials, vol. 112, pp. 1041-1045, 2016.
[12]      M. A. Alsheyab and T. S. Khedaywi, "Effect of electric arc furnace dust (EAFD) on properties of asphalt cement mixture," Resources, Conservation and Recycling, vol. 70, pp. 38-43, 2013.
[13]      P. K. Hazaveh, S. Karimi, F. Rashchi, and S. Sheibani, "Purification of the leaching solution of recycling zinc from the hazardous electric arc furnace dust through an as-bearing jarosite," Ecotoxicology and Environmental Safety, vol. 202, p. 110893, 2020.
[14]      M. Khanlarian, F. Rashchi, and M. Saba, "A modified sulfation-roasting-leaching process for recovering Se, Cu, and Ag from copper anode slimes at a lower temperature," Journal of environmental management, vol. 235, pp. 303-309, 2019.
[15]      V. Montenegro, S. Agatzini-Leonardou, P. Oustadakis, and P. Tsakiridis, "Hydrometallurgical treatment of EAF dust by direct sulphuric acid leaching at atmospheric pressure," Waste and biomass valorization, vol. 7, pp. 1531-1548, 2016.
[16]      C. Jarupisitthorn, T. Pimtong, and G. Lothongkum, "Investigation of kinetics of zinc leaching from electric arc furnace dust by sodium hydroxide," Materials Chemistry and Physics, vol. 77, pp. 531-535, 2003.
[17]      H.-g. Wang, J.-m. Gao, W. Liu, M. Zhang, and M. Guo, "Recovery of metal-doped zinc ferrite from zinc-containing electric arc furnace dust: Process development and examination of elemental migration," Hydrometallurgy, vol. 166, pp. 1-8, 2016.
[18]      D. Herrero, P. Arias, B. Güemez, V. Barrio, J. Cambra, and J. Requies, "Hydrometallurgical process development for the production of a zinc sulphate liquor suitable for electrowinning," Minerals engineering, vol. 23, pp. 511-517, 2010.
[19]      V. Montenegro, P. Oustadakis, P. E. Tsakiridis, and S. Agatzini-Leonardou, "Hydrometallurgical treatment of steelmaking electric arc furnace dusts (EAFD)," Metallurgical and Materials Transactions B, vol. 44, pp. 1058-1069, 2013.
[20]      B. Behnajady and J. Moghaddam, "Selective leaching of zinc from hazardous As-bearing zinc plant purification filter cake," Chemical Engineering Research and Design, vol. 117, pp. 564-574, 2017.
[21]      J.-j. Liu, G.-r. Hu, K. Du, Z.-d. Peng, and Y.-b. Cao, "Influencing factors and kinetics analysis of a new clean leaching process for producing chromate from Cr–Fe alloy," Journal of cleaner production, vol. 84, pp. 746-751, 2014.
[22]      C.-H. Lee, Y.-J. Chen, C.-H. Liao, S. R. Popuri, S.-L. Tsai, and C.-E. Hung, "Selective leaching process for neodymium recovery from scrap Nd-Fe-B magnet," Metallurgical and Materials Transactions A, vol. 44, pp. 5825-5833, 2013.
[23]      K. H. Park, D. Mohapatra, and B. R. Reddy, "A study on the acidified ferric chloride leaching of a complex (Cu–Ni–Co–Fe) matte," Separation and purification technology, vol. 51, pp. 332-337, 2006.
[24]      A. Abdallah, K. K. El, A. K. El, Y. Darmane, and K. Said, "Kinetic study of the manganese mine tailings leaching by organic reductant in sulfuric acid solution," Journal of Mining and Metallurgy A: Mining, vol. 51, pp. 29-39, 2015.
[25]      P. Halli, V. Agarwal, J. Partinen, and M. Lundström, "Recovery of Pb and Zn from a citrate leach liquor of a roasted EAF dust using precipitation and solvent extraction," Separation and Purification Technology, vol. 236, p. 116264, 2020.
[26]      D. C. Montgomery, Design and analysis of experiments: John Wiley & Sons, 2017.
[27]      X. Chen, H. Wang, and B. Yan, "Sulfuric acid leaching and recovery of vanadium from a spinel concentrate beneficiated from stone coal ore," Hydrometallurgy, vol. 191, p. 105239, 2020.
[28]      L. Jia, B. Liang, L. Lü, S. Yuan, L. Zheng, X. Wang, et al., "Beneficiation of titania by sulfuric acid pressure leaching of Panzhihua ilmenite," Hydrometallurgy, vol. 150, pp. 92-98, 2014.
[29]      R. A. Pepper, S. J. Couperthwaite, and G. J. Millar, "Comprehensive examination of acid leaching behaviour of mineral phases from red mud: Recovery of Fe, Al, Ti, and Si," Minerals Engineering, vol. 99, pp. 8-18, 2016.
[30]      L. Wang, Y. Zhang, T. Liu, J. Huang, N. Xue, and Q. Zheng, "Separation of iron impurity during vanadium acid leaching from black shale by yavapaiite-precipitating method," Hydrometallurgy, vol. 191, p. 105191, 2020.
[31]      T. Gominšek, A. Lubej, and C. Pohar, "Continuous precipitation of calcium sulfate dihydrate from waste sulfuric acid and lime," Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, vol. 80, pp. 939-947, 2005.
[32]      A. E. Van Driessche, T. M. Stawski, L. G. Benning, and M. Kellermeier, "Calcium sulfate precipitation throughout its phase diagram," in New perspectives on mineral nucleation and growth, ed: Springer, 2017, pp. 227-256.
[33]      D. Damidot and F. Glasser, "Thermodynamic investigation of the CaO Al2O3 CaSO4 H2O system at 25° C and the influence of Na2O," Cement and concrete research, vol. 23, pp. 221-238, 1993.
[34]      W. Liu, F. Huang, Y. Wang, T. Zou, J. Zheng, and Z. Lin, "Recycling Mg (OH) 2 nanoadsorbent during treating the low concentration of CrVI," Environmental science & technology, vol. 45, pp. 1955-1961, 2011.