رفتار خوردگی، رفتگی و رفتگی-خوردگی پوشش نیکل-فسفر حاوی ذرات SiC روی سطح فولاد X65

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، گروه مهندسی مواد و متالورژی، دانشکده مهندسی، دانشگاه کاشان، کاشان، ایران.

2 استادیار، گروه مهندسی مواد و متالورژی، دانشکده مهندسی، دانشگاه کاشان، کاشان، ایران.

چکیده

هدف این تحقیق بررسی رفتار خوردگی، رفتگی و رفتگی-خوردگی پوشش­های نیکل-فسفر حاوی ذرات SiC روی سطح فولاد  X65 است. پوشش­دهی در حمام­های الکترولس حاوی صفر، 5، 10 و 15 گرم بر لیتر انجام شد. پس از آماده­سازی پوشش­ها، بررسی­ها با استفاده از میکروسکپ الکترونی روبشی (SEM)، پراش پرتو ایکس (XRD) و سختی­سنجی انجام شد. همچنین آزمون­های پلاریزاسیون در حالت ساکن و در حین رفتگی روی پوشش­های مختلف انجام گرفت. آزمون­های رفتگی-خوردگی و رفتگی خالص نیز با استفاده از دستگاه جت برخوردی تحت زاویه برخورد 90 درجه و سرعت برخورد 5/6 متر بر ثانیه انجام شد و پارامترهای هم­افزایی رفتگی و خوردگی محاسبه شد. نتایج آزمون XRD و تصاویر SEM بیانگر افزایش مقدار کاربید سیلیسیم در پوشش با افزایش غلظت ذراتSiC  در حمام الکترولس نیکل-فسفر تا 10 گرم بر لیتر بود. افزایش بیشتر غلظت ذرات در حمام تاثیر چندانی بر مقدار ذرات در پوشش نداشت. آزمون­های پلاریزاسیون در حالت رفتگی بیانگر تاثیر زیاد حضور ذرات SiC در کاهش نرخ خوردگی پوشش­های کامپوزیتی در مقایسه با پوشش ساده نیکل-فسفر بود. همچنین نتایج آزمون­های رفتگی و رفتگی-خوردگی نشان داد که افزودن ذرات SiC به پوشش می­تواند منجر به کاهش قابل توجه نرخ رفتگی-خوردگی و نرخ رفتگی شود. این موضوع به نقش ذرات SiC در محدود کردن تغییر شکل پلاستیک ناشی از برخورد ذرات ساینده حین آزمون رفتگی و رفتگی-خوردگی در سطح پوشش کامپوزیتی نسبت داده شد.

کلیدواژه‌ها


عنوان مقاله [English]

Corrosion, erosion and erosion-corrosion behavior of SiC reinforced Ni-P coating on the surface of X65 steel

نویسندگان [English]

  • Mohammad Rasool Khorshidi Fard 1
  • Morteza Abedini 2
1 M.Sc., Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran.
2 Assistant Professor, Department of Metallurgy and Materials Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran.
چکیده [English]

In the present paper, corrosion, erosion and erosion-corrosion behavior of Ni-P-SiC composite coatings on the surface of X65 carbon steel were investigated. The coatings were produced in an electroless solution containing 0, 5, 10, and 15 g/l SiC particles. The prepared coatings were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD) and microhardness measurements. Polarization tests in a stagnant solution and during erosion-corrosion were also performed to characterize the corrosion behavior of various coatings. Erosion-corrosion and pure erosion tests were carried out using a slurry impingement rig at an impingement angle of 90° under a jet velocity of 6.5 m/s and the synergy parameters were then calculated. SEM images and XRD results showed an increase in the amount of embedded SiC particles in the coatings by increasing the concentration of SiC particles in Ni-P bath up to 10 g/l. Further increase in the SiC concentration in the electroless bath had less effect on the amount of embedded SiC in the coatings. Polarization tests during erosion-corrosion revealed that the embedded SiC particles could largely lower the corrosion rate of the composite coatings as compared with Ni-P coating.  The results also showed that the addition of SiC particles in the coating resulted in a significant decrease in the erosion and erosion-corrosion rates. This was attributed to the limited plastic deformation on the surface of the composite coating as a result of the presence of SiC particles.  

کلیدواژه‌ها [English]

  • Electroless Ni-P coating
  • Ni-P-SiC coating
  • Corrosion
  • Erosion
  • Erosion-corrosion
[1]         R. Winston Revie; Herbert H. Uhlig, Corrosion and Corroison Control: An Introduction to Corrosion Science and Engineering, Fourth Edi, A John Wiley & Sons INC., 2008.
[2]         J. Basumatary, R.J.K. Wood, Synergistic effects of cavitation erosion and corrosion for nickel aluminium bronze with oxide film in 3.5% NaCl solution, Wear. 376–377 (2017) 1286–1297. doi:10.1016/J.WEAR.2017.01.047.
[3]         S. Skal, Y. Kerroum, A. Guenbour, A. Bellaouchou, R. Boulif, H. Idrissi, et al., Erosion–Corrosion Effect on the Alloy 316L in Polluted Phosphoric Acid, J. Bio- Tribo-Corrosion. 5 (2019). doi:10.1007/s40735-019-0270-4.
[4]         R.J.K. Wood, J. a. Wharton, A.J. Speyer, K.S. Tan, Investigation of erosion-corrosion processes using electrochemical noise measurements, Tribiology Int. 35 (2002) 631–641. doi:10.1016/S0301-679X(02)00054-3.
[5]         N. Khayatan, H.M. Ghasemi, M. Abedini, Synergistic erosion-corrosion behavior of commercially pure titanium at various impingement angles, Wear. 380–381 (2017) 154–162. doi:10.1016/j.wear.2017.03.016.
[6]         H. Lu, J. Shang, X. Jia, Y. Li, F. Li, J. Li, et al., Erosion and corrosion behavior of shrouded plasma sprayed Cr3C2-NiCr coating, Surf. Coatings Technol. 388 (2020) 125534. doi:10.1016/j.surfcoat.2020.125534.
[7]         F. Huang, J. jie Kang, W. Yue, X. bin Liu, Z. qiang Fu, L. na Zhu, et al., Effect of heat treatment on erosion–corrosion of Fe-based amorphous alloy coating under slurry impingement, J. Alloys Compd. 820 (2020) 153132. doi:10.1016/j.jallcom.2019.153132.
[8]         G.A. Ludwig, C.F. Malfatti, R.M. Schroeder, V.Z. Ferrari, I.L. Muller, WC10Co4Cr coatings deposited by HVOF on martensitic stainless steel for use in hydraulic turbines: Resistance to corrosion and slurry erosion, Surf. Coatings Technol. 377 (2019) 124918. doi:10.1016/j.surfcoat.2019.124918.
[9]         L. Chen, S.L. Bai, Y.Y. Ge, Q.Y. Wang, Erosion-corrosion behavior and electrochemical performance of Hastelloy C22 coatings under impingement, Appl. Surf. Sci. 456 (2018) 985–998. doi:10.1016/j.apsusc.2018.06.209.
[10]       C.K. Lee, Structure, electrochemical and wear-corrosion properties of electroless nickel-phosphorus deposition on CFRP composites, Mater. Chem. Phys. 114 (2009) 125–133. doi:10.1016/j.matchemphys.2008.08.088.
[11]       Z. Li, Z. Farhat, M.A. Islam, Investigation of Single-Particle Erosion Behavior of Electroless Ni-P-Ti Composite Coatings, J. Mater. Eng. Perform. (2020). doi:10.1007/s11665-020-04722-z.
[12]       D.G. Agredo Diaz, A. Barba Pingarrón, J.J. Olaya Florez, J.R. González Parra, J. Cervantes Cabello, I. Angarita Moncaleano, et al., Effect of a Ni-P coating on the corrosion resistance of an additive manufacturing carbon steel immersed in a 0.1 M NaCl solution, Mater. Lett. 275 (2020) 128159. doi:10.1016/j.matlet.2020.128159.
[13]       D.R. Dhakal, G. Gyawali, Y.K. Kshetri, J.H. Choi, S.W. Lee, Microstructural and electrochemical corrosion properties of electroless Ni-P-TaC composite coating, Surf. Coatings Technol. 381 (2020) 125135. doi:10.1016/j.surfcoat.2019.125135.
[14]       N. Ghavidel, S.R. Allahkaram, R. Naderi, M. Barzegar, H. Bakhshandeh, Corrosion and wear behavior of an electroless Ni-P/nano-SiC coating on AZ31 Mg alloy obtained through environmentally-friendly conversion coating, Surf. Coatings Technol. 382 (2020) 125156. doi:10.1016/j.surfcoat.2019.125156.
[15]       A.R. Shashikala, B.S. Sridhar, Codeposition of electroless Ni-P/ZnO nano composites and evaluation of corrosion resistance of the coatings, Mater. Today Proc. 45 (2019) 3837–3840. doi:10.1016/j.matpr.2020.05.447.
[16]       J. Chen, G. Zhao, K. Matsuda, Y. Zou, Microstructure evolution and corrosion resistance of Ni–Cu–P amorphous coating during crystallization process, Appl. Surf. Sci. 484 (2019) 835–844. doi:10.1016/j.apsusc.2019.04.142.
[17]       C. Ma, F. Wu, Y. Ning, F. Xia, Y. Liu, Effect of heat treatment on structures and corrosion characteristics of electroless Ni-P-SiC nanocomposite coatings, Ceram. Int. 40 (2014) 9279–9284. doi:10.1016/j.ceramint.2014.01.150.
[18]       R. Soleimani, F. Mahboubi, M. Kazemi, S.Y. Arman, Corrosion and tribological behaviour of electroless Ni-P/nano-SiC composite coating on aluminium 6061, Surf. Eng. 31 (2015) 714–721. doi:10.1179/1743294415Y.0000000012.
[19]       A. Farzaneh, M. Mohammadi, M. Ehteshamzadeh, F. Mohammadi, Electrochemical and structural properties of electroless Ni-P-SiC nanocomposite coatings, Appl. Surf. Sci. 276 (2013) 697–704. doi:10.1016/j.apsusc.2013.03.156.
[20]       B. Jiang, S.L. Jiang, A.L. Ma, Y.G. Zheng, Effect of heat treatment on erosion-corrosion behavior of electroless Ni-P coatings in saline water, Mater. Manuf. Process. 29 (2014) 74–82. doi:10.1080/10426914.2013.852222.
[21]       C. Sun, J. Li, V. Fattahpour, M. Roostaei, M. Mahmoudi, H. Zeng, et al., Insights into the erosion-enhanced corrosion on electroless Ni–P coating from single particle impingement, Corros. Sci. 166 (2020) 108422. doi:10.1016/j.corsci.2019.108422.
[22]       Z. Li, M.A. Islam, Z. Farhat, Investigation of Erosion–Corrosion Resistance of Electroless Ni–P–Ti Composite Coatings, J. Bio- Tribo-Corrosion. 6 (2020). doi:10.1007/s40735-020-00404-4.
[23]       C. Wang, Z. Farhat, G. Jarjoura, M.K. Hassan, A.M. Abdullah, Indentation and erosion behavior of electroless Ni-P coating on pipeline steel, Wear. 376–377 (2017) 1630–1639. doi:10.1016/j.wear.2016.12.054.
[24]       J.A. Calderón, J.E. Henao, M.A. Gómez, Erosion-corrosion resistance of Ni composite coatings with embedded SiC nanoparticles, Electrochim. Acta. 124 (2014) 190–198. doi:10.1016/j.electacta.2013.08.185.
[25]       A. Pasha, H.M. Ghasemi, J. Neshati, Synergistic Erosion–Corrosion Behavior of X-65 Carbon Steel at Various Impingement Angles, J. Tribol. 139 (2016) 011105. doi:10.1115/1.4033336.
[26]       Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM G109. (1999) 1–7. http://www.astm.org/Standards/G102.htm.
[27]       Standard Guide for Determining Synergism Between Wear and Corrosion, ASTM G119. (1994) 1–7. doi:10.1520/G0119-09.2.
[28]       S. Zhang, K. Han, L. Cheng, The effect of SiC particles added in electroless Ni-P plating solution on the properties of composite coatings, Surf. Coatings Technol. 202 (2008) 2807–2812. doi:10.1016/j.surfcoat.2007.10.015.
[29]       A. Zoikis-Karathanasis, E.A. Pavlatou, N. Spyrellis, Pulse electrodeposition of Ni-P matrix composite coatings reinforced by SiC particles, J. Alloys Compd. 494 (2010) 396–403. doi:10.1016/j.jallcom.2010.01.057.
[30]       X. Yuan, D. Sun, H. Yu, H. Meng, Z. Fan, X. Wang, Preparation of amorphous-nanocrystalline composite structured Ni-P electrodeposits, Surf. Coatings Technol. 202 (2007) 294–300. doi:10.1016/j.surfcoat.2007.05.040.
[31]       M.C. Chou, M. Der Ger, S.T. Ke, Y.R. Huang, S.T. Wu, The Ni-P-SiC composite produced by electro-codeposition, Mater. Chem. Phys. 92 (2005) 146–151. doi:10.1016/j.matchemphys.2005.01.021.
[32]       I. Apachitei, F.D. Tichelaar, J. Duszczyk, L. Katgerman, The effect of heat treatment on the structure and abrasive wear resistance of autocatalytic NiP and NiP-SiC coatings, Surf. Coatings Technol. 149 (2002) 263–278. doi:10.1016/S0257-8972(01)01492-X.
[33]       G.E. Dieter, Mechanical Metallurgy, SI Metric, McGraw-Hill, Singapore, 1928.
[34]       M. Abedini, H.M. Ghasemi, Synergistic erosion – corrosion behavior of Al – brass alloy at various impingement angles, Wear. 319 (2014) 49–55. doi:10.1016/j.wear.2014.07.008.
[35]       M. Abedini, H.M. Ghasemi, Erosion and erosion–corrosion of Al-brass alloy: Effects of jet velocity, sand concentration and impingement angle on surface roughness, Trans. Nonferrous Met. Soc. China. 27 (2017) 2371–2380. doi:10.1016/S1003-6326(17)60263-2.