بررسی نظری ویژگی‌های الکترونی و ترموالکتریکی ترکیب Sb1-xAxNSr3، A=P, As, Bi

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه فیزیک، دانشکدۀ علوم، دانشگاه شهید چمران اهواز، اهواز، ایران.

2 دانشجوی دکتری، گروه فیزیک، دانشکدۀ علوم، دانشگاه شهید چمران اهواز، اهواز، ایران.

3 استادیار، گروه فیزیک، دانشکدۀ علوم، دانشگاه شهید چمران اهواز، اهواز، ایران.

چکیده

در این مقاله ویژگی­های الکترونی و ترموالکتریکی Sb1-xAxNSr3 به ازاء P، As و Bi مورد بحث و بررسی قرار گرفت. محاسبات در چارچوب نظریه تابعی چگالی و روش شبه­پتانسیل با امواج تخت انجام شد. جهت محاسبات پتانسیل تبادلی- همبستگی از تابعی هیبریدی HSE استفاده شد. نتایج محاسبات الکترونی نشان داد اتم­های P و As به میزان اندکی گاف نواری را افزایش و اتم Bi آن ­را کاهش می­دهد. ویژگی­های ترموالکتریکی از قبیل ضریب سیبک، رسانندگی الکتریکی و رسانندگی گرمایی در سه دمای 300، 500 و 700 کلوین محاسبه شدند. رسانندگی الکتریکی ترکیبات آلائیده با افزایش دما، افزایش می­یابد. رسانندگی گرمایی الکترونی محاسبه شده نشان داد که با افزایش دما رسانندگی گرمایی افزایش می­یابد. ضریب سیبک برای هر سه ناخالصی، در دمای اتاق مقادیر بیش­تری نسبت به دیگر دماها داشت. بیشینۀ ضریب سیبک Sb1-xPxNSr3 بیش­تر از دیگر ناخالصی­ها به دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Theoretical investigation of the electronic and thermoelectric properties of Sb1-xAxNSr3, A=P, As, Bi

نویسندگان [English]

  • Hamdollah salehi 1
  • Narghesosadat Mousavinezhad 2
  • Peyman Amiri 3
1 Associate Professor, Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
2 Ph.D.graduate, Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
3 Assistante Professor, Department of Physics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
چکیده [English]

In this paper, the electronic and thermoelectric properties of Sb1-xAxNSr3, A=P, As, and Bi has been investigated. The calculations were done within density functional theory and using pseudo-potential method with plane wave. HSE hybrid functional was used for exchange correlation potential. The electronic results showed that band gap increases by doping P and As atoms and decreases by doping Bi atom. The seebeck coeficient, electrical conductivity and electronic thermal conductivity were calculated in three temperatures of 300, 500 and 700 K. The electrical and electronic thermal conductivity increases with temperature. Seebeck coefficient in the room temperature were obtained higher than that of other temperaturs. The maximum Seebeck coefficient of Sb1-xPxNSr3 was higher than that of others.

کلیدواژه‌ها [English]

  • DFT
  • SbNSr3
  • seebeck coefficient
  • thermal conductivity
  • electrical conductivity
1. Xi L, Yang J, Wu L, Yang J, and Zhang W, "Band  Engineering and Rational Design of High-Performance Thermoelectric Materials by First-Principles" Journal of Materiomics, Vol. 2, pp. 114-130, 2016.
2. Boyer L, and Edwardson P, "Perovskite to Antiperovskite in ABF3 Compounds" Ferroelectrics, Vol. 104, pp. 417-422, 1990.
3. Krivovichev S. V, "Minerals with Antiperovskite Structure: a Review" Zeitschrift Fur Kristallographie,Vol.  223, pp. 109-113, 2008.
4.  Niewa R, "Alkaline‐Earth Metal Nitrides of the Main‐Group Elements: Crystal Structures and Properties of Inverse Perovskites" Zeitschrift für Anorganische und allgemeine Chemie, Vol. 639, pp. 1699-1715, 2013.
5.  Bilal  M, Jalali-Asadabadi S, Ahmad R, and Ahmad I, "Electronic Properties of Antiperovskite Materials from State-of-the-Art Density Functional Theory" Journal of Chemistry. Vol. 2015, pp. 1-12, 2015.
6.  Zhao Y, and Daemen L. L , "Superionic Conductivity in Lithium-Rich Anti-Perovskites" Journal of the American Chemical Society, Vol. 134, pp. 15042-15047, 2012.
7.  Wang B, Tong P, Sun Y, Li L, Tang W, Lu W, Zhu X, Yang Z, and Song W, "Enhanced Giant Magnetoresistance in Ni-Doped Antipervoskite Compounds GaCMn 3− x Ni x (x= 0.05, 0.10)," Applied Physics Letters, Vol. 95, pp. 222509, 2009.
8.  Wang B, Tong P, Sun Y, Luo X, Zhu X, et al., "Large Magnetic Entropy Change Near Room Temperature in Antiperovskite SnCMn3," EPL (Europhysics Letters), Vol. 85, pp. 47004, 2009.
9. He T, Huang Q, Ramirez A. P, Wang Y, Regan K. A, et al., "Superconductivity in the Non-Oxide Perovskite MgCNi3," Nature. 411, 54-56 (2001).
10.  Wang Y, Zhang H, Zhu J, Lü X, Li S, Zou R, and Zhao Y, "Antiperovskites with Exceptional Functionalities" Advanced Materials, Vol. 32, pp.1905007, 2020.
11.  Bilal M, Shafiq M, Khan B, Aliabad H. R, Asadabadi S. J, Ahmad R, and Ahmad I, "Antiperovskite Compounds SbNSr3 and BiNSr3: Potential Candidates for Thermoelectric Renewable Energy Generators" Physics Letters A, Vol. 379, pp. 206-210, 2015.
12.  Fang Y, Kong X, Wang D, Liu J, and Cui S, "First Principle Calculations of Electronic,Band Structural, and Optical Properties of BixSr1-xTiO3 perovskite" Journal of Physics and Chemistry of Solids, Vol. 127, pp. 107-114, 2019.
13. Adewale A,  Chik A, Zaki R. M, Che Pa F, Keat Y.C, and Jamil N, "Thermoelectric Transport Properties of SrTiO3 Doped with Pm" Solid State Phenomena, Vol. 280, pp. 3-8, 2018.
14. Kohn W, and Sham L.J, "Self-Consistent Equations Including Exchange and Correlation Effects", Physical Review, Vol. 140, pp. A1133, 1965.
15. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R,  et al., "QUANTUM ESPRESSO:A Modular and Open-Source Software Project for Quantum Simulations of Materials", Journal of Physics: Condensed Matter, Vol. 21, pp. 395502, 2009.
16. Salehi H, Mousavinezhad N,  Amiri P, "Ab-Initio Calculation of the Structural,Eelectronic, Optical and Transport Properties of SbNSr3 Ternary Nitride Compound", Computational Condensed Matter, Vol. 21, pp. e00395, 2019. 
17. Mousavinezhad N, Salehi H, Amiri P, " Investigation of the Structural and Electronic Properties and Surface Passivation Influence on Electronic Properties of Anti-Perovskite SbNSr3 (001) Nano-Surfaces: A Hybrid DFT Study",Ssubmitted, 2020. 
18.  Rappe A. M, Rabe K. M, Kaxiras E, and Joannopoulos J, "Optimized Pseudopotentials", Physical Review B, Vol. 41, pp. 1227, 1990.
19. Monkhorst H. J, and Pack J.  D, "Special Points for Brillouin-Zone Integrations", Physical Review B, Vol. 13, pp. 5188, 1976. 
20. Scheidemantel T, Ambrosch-Draxl C, Thonhauser T, Badding J. V, and Sofo J. O, "Transport Coefficients From First-Principles Calculations" Physical Review B, Vol. 68, pp. 125210, 2003.
21. Madsen G. K, and Singh D. J, "BoltzTraP. A Code for Calculating Band-Structure Dependent Quantities", Computer Physics Communications, Vol. 175, pp. 67-71, 2006.
22. Tyuterev V, and Vast N, "Murnaghan’s equation of state for the electronic ground state energy," Computational Materials Science, Vol. 38, pp. 350-353, 2006.
23. Lee S, Levi R, Qu W, Lee S. Ch, and Randall C. A, "Band-gap nonlinearity in perovskite structured solid solutions" Applied Physics, Vol. 107, pp. 023523, 2010.
24.  Haddadi K, Bouhemadou A, Louail L, Rahal F, and Maabed S, "Prediction Study of the Structural, Elastic and Electronic Properties of ANSr3 (A= As, Sb and Bi)" Computational Materials Science, Vol. 46, pp. 881-886, 2009.
25. Rani U, Kamlesh P. K, Shukla A, Verma A. S, "Emerging potential antiperovskite materials ANX3 (A¼ P, As, Sb, Bi; X¼ Sr, Ca, Mg) for thermoelectric renewable energy generators", Solid State Chemistry, Vol.  300, pp. 122246, 2021.
26. Gäbler F, Kirchner M, Schnelle W, Schwarz U, Schmitt M, Rosner H, and Niewa R, "(Sr3N) E and (Ba3N) E (E= Sb, Bi): Synthesis, Crystal Structures, and Physical Properties" Zeitschrift für Anorganische und Allgemeine Chemie, Vol. 630, pp. 2292-2298, 2004.
27.  Hichour M, Khenata R, Rached D, Hachemaoui M, Bouhemadou A, Reshak A.H, and Semari F, "FP-APW+ lo Study of the Elastic, Electronic and Optical Properties for the Cubic Antiperovskite ANSr3 (A= As, Sb and Bi) under Pressure Effect" Physica B: Condensed Matter, Vol. 405, pp. 1894-1900, 2010.
28. Ullah I, Murtaza G, Khenata R, Mahmood A, Muzzamil M, Amin N, and Saleh M, "Structural and Optoelectronic Properties of X3ZN (X= Ca, Sr, Ba; Z= As, Sb, Bi) Anti-Perovskite Compounds" Journal of Electronic Materials, Vol. 45, pp. 3059-3068, 2016.
29. Nambuddee M, and Moontragoon P, "Calculation of Electronic Structure and Thermoelectric Properties of Ge(1-x)Six Alloy", Chiang Mai Journal of Science, Vol. 40,  pp. 1013-1019, 2013.