مطالعه تجربی جذب اورانیوم از پسماند جامد راکتور مونل با استفاده از رزین آمبرلایتIRA-910 در فرآیند تبادل یون

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، پژوهشگاه علوم و فنون هسته‌ای، تهران، ایران.

2 دانشیار، دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران، تهران، ایران.

3 استادیار، دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران، تهران، ایران.

چکیده

هدف از این تحقیق مطالعه و بررسی استخراج اورانیوم از یک پسماند جامد با استفاده از فرآیند تبادل یون توسط رزین می‌باشد. بدین منظور پسماند جامد راکتور فلوریناسیون انتخاب گردید. جهت بازیابی اورانیوم از پسماند جامد از اسیدسولفوریک به‌عنوان حلال و سپس رزین آمبرلایت IRA-910 جهت جذب نهایی در فرآیند تبادل یون استفاده گردید. نتایج نشان داد که اورانیوم با بازدهی 80 تا 90 درصد توسط این رزین جذب گردید. جرم بهینه رزین برای جذب از محیط اسیدسولفوریک با غلظت‌های اولیه اورانیوم 180، 270 و 450 میلی‌گرم بر لیتر، به ترتیب 15/0، 3/0 و 5/0 گرم به‌دست آمد. اثر غلظت اولیه اورانیوم، زمان تماس و دما بر جذب مورد بررسی قرار گرفت. زمان تماس بهینه 2 ساعت به‌دست آمد. پارامترهای ترمودینامیکی تغییر آنتالپی، انتروپی و تغییر انرژی گیبس، برای غلظت اولیه اورانیوم 370 میلی‌گرم بر لیتر محاسبه گردید. داده‌های تجربی برای غلظت اولیه اورانیوم 185 میلی‌گرم بر لیتر و غلظت اسیدسولفوریک 09/0 و 02/0 مولار تطابق بسیار خوبی با ایزوترم جذب فروندلیچ دارند. پارامترهای سینتیکی جذب اورانیوم از محلول پسماند لیچ شده بر روی رزین IRA-910 برای سینتیک جذب لاگرانژ و نیز سینتیک شبه درجه دو محاسبه گردید.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental study of uranium adsorption from solid waste solution of the Monel reactor using the Amberlite IRA- 910 resin in the ion exchange process

نویسندگان [English]

  • Akram Rahmati 1
  • Ahad Ghaemi 2
  • alireza Hemmati 3
1 M.Sc., Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran.
2 Associate Professor, School of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran.
3 Assistant Professor, School of Chemical Engineering, Iran University of Science and Technology, Tehran, Iran.
چکیده [English]

The extraction of uranium from a solid waste by using the resin ion exchange process is the subject of this study. For this purpose, the solid waste of the fluorination reactor was selected. In order to uranium recovery from this solid waste, sulfuric acid was used as a solvent and IRA-910 amberite resin was used for adsorption by ion exchange process. The results showed that uranium was adsorbed by this resin with 80-90 % efficiency. The optimum mass of resin for adsorption from sulfuric acid medium with initial concentrations of 180, 270 and 450 mg / l uranium were 0.15, 0.3 and 0.5 g, respectively. The effect of uranium initial concentration, contact time and temperature on adsorption was investigated. The optimum contact time was 2 hours. The thermodynamic parameters of enthalpy change, entropy, and Gibbs energy change for the initial uranium concentration of 370 mg / l were calculated and it was determined that this process is endothermic. Experimental data for the initial uranium concentration of 185 mg / l and the sulfuric acid concentration of 0.09 and 0.02 M are in excellent agreement with the Freundlich isotherm absorption. The kinetic parameters of uranium uptake on IRA-910 for Lagergren and pseudo second order adsorption kinetics were calculated.

کلیدواژه‌ها [English]

  • uranium
  • waste
  • resin
  • adsorption
  • Amberlite IRA- 910
[1] Manchanda V.K., Pathak  P.N. Amides and diamides as promising extractants in the back end of the nuclear fuel cycle: an overview. Separation and Purification Technology 2004;  35(2):85-103.
 
[2] Crowley  K. D.   Nuclear Waste Disposal: The Technical Challenges. Physics Today 1997; 50: 32-39.
 
[3] Kabay N., DemircioGlu M., Yaylı S., Gunay E., Yuksel M., Saglam M., Streat M. Recovery of Uranium from Phosphoric Acid Solutions Using Chelating Ion-Exchange Resins. Industrial Engineering Chemistry Research 1998; 37: 1983–1990.
 [4]Qadeer R, Hanif J, Saleem M and Afzal M.  Effect of alkali metals, alkaline earth metal and lanthanides on the adsorption of uranium on activated charcoal from aqueous solutions. Journal of Radioanalytical and Nuclear Chemistry 1991; 165 (4): 243-253.
[5] Guettaf H, Becis A, Ferhat K, Hanou K, Bouchiha D, Yakoubi K and Ferrad F. Concentration-purification of uranium from an acid leaching solution. Phys Procedia 2009; 2(3):765-771.
 
[6] Gama J S, Barry J, and Crouse P L. Batch adsorption study of uranium on various ion exchange resins as an alternative method to solvent extraction. Conference of the South African Advanced Materials 2018; 430.
 
[7] Kilislioglu A, Bilgin B. Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin. Applied Radiation and Isotopes 2003; 58: 155-160.
 
 [8] Dietz M.L , Horwitz E.P, Sajdak L.R, Chiarizia R. An improved extraction chromatographic resin for the separation of uranium from acidic nitrate media. Talanta 2001;  54: 1173-1184.
[9] Praveen R.S, Metilda P, Daniel S, Prasada Rao T. Solid phase extractive preconcentration of uranium(VI) using quinoline-8-ol anchored chloromethylated polymeric resin beads. Talanta  2005; 67(5): 960-967.
 
[10] Nogami M, Ishihara T, Maruyama K, Ikeda Y. Effect of chemical structure of monoamide resins on adsorptivity to uranium(VI) in nitric acid media. Progress in Nuclear Energy  2008; 50 (2-6): 462-465.
 
 [11] Manjusha  K,Reeta V.R. Amberlite XAD-2 impregnated organophophoric acid extraction for separation of uranium(VI) from rare earth.  Journal of Desalination 2008; 232 (1-3) :191-197.
 
 [12] پژوهشگران پژوهشگاه علوم و فنون هسته‌ای، زیر نظر دکتر محمد قنادی مراغه. چرخه سوخت هسته‌ای. انتشارات زلال کوثر، با همکاری روابط عمومی پژوهشگاه علوم و فنون هسته ای، 1388.
 
[13] Nagar M.S. Evaluating Commercial Macroporous Resin (D201) for Uranium Uptake in Static and Dynamic Fixed Bed Ion Exchange Column. International Journal of New Chemistry 2020;  7 (2): 150-168.
 
 [14] Sheta M E , Abdel-Samad A A, Mousa M A and Aly H F. Application of liquid-liquid extraction for waste Effluents treatment. Arab journal of nuclear and applications 2010; 43(2): 65-74.
[15] Abdel Aal M.M, AbdelSamad A.A. Comparative Chemical Studies Between Fixed Bed and Batch Dynamic Ion Exchange Techniques for Extraction of Uranium. Arab Journal of Nuclear Sciences and Applications 2019;  52 ( 2): 187-200.
 [16] Rahmati A, Ghaemi A ,Samadfam M.  Kinetic and thermodynamic studies of uranium(VI) adsorption using Amberlite IRA-910 resin. Annals of Nuclear Energy 2012; 39: 42–48.
 [17] Tianzhen Ye, Zhirong Liu, Zhiwang Cai. Adsorption of uranium(VI) from aqueous solution by novel dibutyl imide chelating resin. Journal of Radioanalytical and Nuclear Chemistry 2019;  323: 223-232.[18] Masoud A.M;  Saeed M; . Taha M.H;  El-Maadawy M. M. Uranium Adsorption from Bahariya Oasis leach liquor via TOPO Impregnated Bentonite Material; Isothermal, kinetic and Thermodynamic Studies. Egyptian Journal of Chemistry 2020;  63( 2): 721-741.
[19] Ahmad A.A. Kinetics of uranium adsorption from sulfate medium by a commercial anion exchanger modifed with quinoline and silicate. Journal of Radioanalytical and Nuclear Chemistry 2020; 324: 1387–1403.
[20] Wahab S.A·, Rezikb A, Abu Khoziem H.A,Khalid E, Abdellah W. Kinetics of uranium carbonate leaching process from carbonaceous shale, southwestern Sinai, Egypt. Euro-Mediterranean Journal for Environmental Integration 2019; 4-19.
[21] Olmez Aytas S, Akyil S, Eral M. Adsorption and thermodynamic behavior of uranium on natural zeolite. Journal of Radioanalytical and Nuclear Chemistry 2004; 260: 119.125.
 [22] Yaochi L, Wei X , Weijian X , Hanmao L Xiaowen Z. Comparison between two commercial uranium resins and a uranyl sulphate imprinted resin based on self-assembling MIT. Frontiers of Chemical Engineering in China 2007; 1(4):327-331.
[23] Chanda M and Rempel G.L. Uranium sorption behavior of a macroporous, quaternized poly(4-vinylpyridine) resin in sulfuric acid medium. Reactive Polymers  1992; 18 :141-154.
 [24] Nouh Kouraim M, Sheta M.E.S and Abd Elaal M.M . Investigation of uranium sorption from acidic sulfate solution using organosilicate compound and Amberlite IRA 402. Russian Journal of Applied Chemistry 2005; 78 ( 5):7223-726.
 [25] Kolomiets D.N, Troshkina I. D, Sheremet’ev M. F, and. Konopleva L. V. Sorption of Uranium from Sulfuric Acid Leaching Solutions by Strongly Basic Anion Exchangers. Russian Journal of Applied Chemistry 2005; 78(5):. 722- 726.
 
[26] Khayyun1 T.Sh,· Mseer.A.H. Comparison of the experimental results with the Langmuir and Freundlich models for copper removal on limestone adsorbent. Applied Water Science 2019; 9:170-178.
 
[27] Kowsari M.R,. Sepehrian H, Fasihi J, Arabieh M, Mahani M. Adsorptive Behavior of an Amberlite Anion Exchanger Resin for Uranium (VI) Sorption in the Presence of Sulfate Anions.  International Journal of Engineering 2016;29 (2): 170-175.
 
[28]. Massoud A , Masoud A.M,. Youssef W. M. Sorption characteristics of uranium from sulfate leach liquor by commercial strong base anion exchange resins. Journal of Radioanalytical and Nuclear Chemistry 2019; 322: 1065–1077.
 
[29] Shaimaa M.A.E. Sorption of uranium after carbonate leaching by low cost activated carbon–aluminum ferrisilicate composite. International Journal of Environmental Analytical Chemistry 2020; 1029-10397.