مطالعه تجربی و بهینه‌سازی پارامترهای موثر بر استخراج پرازئودیمیم و نئودیمیم از محلول شبیه‌سازی شده لیچ آهن‌ربای نئودیمیم-آهن-بور با سیانکس 272

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران، تهران، ایران.

2 دانشیار، دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران، تهران، ایران.

3 استاد، دانشکده مهندسی شیمی، دانشگاه علم و صنعت ایران، تهران، ایران .

چکیده

عناصر پرازئودیمیم (Pr) و نئودیمیم (Nd) جزو دسته عناصر نادر خاکی سبک هستند که به دلیل کاربردهای فراوان بسیار مورد توجه بوده‌اند. در این تحقیق استخراج پرازئودیمیم و نئودیمیم از محلول شبیه‌سازی لیچ آهن‌ربای نئودیمیم-آهن-بور با مخلوط سیانکس 272/کروزن مدل‌سازی تجربی و بهینه‌سازی گردید. برای مدل‌سازی تجربی فرآیند، از روش سطح پاسخ بر مبنای طرح مرکب مرکزی استفاده گردید. در انجام آزمایش‌های تجربی، اثر متغیرهای غلظت سیانکس 272 در فاز آلی (mol/L 57/0- 23/0)، pH فاز آبی (0/5-0/2) و نسبت فاز آلی به آبی (3-1) بر پاسخ‌های بازدهی استخراج Nd، بازدهی استخراج Pr و فاکتور جداسازی مطالعه گردید و معادلات پیش‌بینی‌کننده پاسخ‌های مورد نظر ارائه گردیدند. ترتیب میزان اثرگذاری متغیرها بر بازدهی استخراج برخلاف ترتیب اثرگذاری آن‌ها بر فاکتور جداسازی حاصل گردید. در نهایت نیز بهینه‌سازی سیستم مورد مطالعه با هدف دست‌یابی به بیش‌ترین گزینش‌پذیری عملیاتی انجام گردید که نتایج برای بازدهی استخراج Nd و Pr و فاکتور جداسازی به ترتیب برابر %7/71، %5/62 و 54/1 بدست آمد. هم‌چنین مطالعه فرآیند دفع فاز آلی بارگیری شده با یون‌های Pr و Nd نشان داد که بازیابی تقریبا کامل فاز آلی تحت شرایط غلظت اسید هیدروکلریک برابر  mol/L 1/0 و زمان تماس 5 دقیقه امکان پذیر است. در واقع سیستم مورد مطالعه عملکرد مناسبی را هم در فرآیند استخراج و هم در فرآیند دفع Pr و Nd در شرایط مورد بررسی نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

Experimental study and optimization of effective parameters on extraction Praseodymium and Neodymium from simulated NdFeB magnet-leaching solutions using Bis (2,4,4-trimethylpentyl) phosphinic acid

نویسندگان [English]

  • Hesamoddin Gorzin 1
  • Ahad Ghaemi 2
  • Ali Maleki 3
1 Phd student, School of Chemistry Engineering, Iran university of science and technology, Tehran, Iran.
2 Associate Professor, School of Chemistry Engineering, Iran university of science and technology, Tehran, Iran.
3 Professor, School of Chemistry Engineering, Iran university of science and technology, Tehran, Iran.
چکیده [English]

Praseodymium (Pr) and neodymium (Nd) are among the rare earth elements that have received significant attention due to their many applications. In this research, the separation of Pr and Nd from simulated NdFeB magnet leaching solutions with Cyanex 272/kerosene was modeled and optimized. Response surface methodology (RSM) based on the central composite design (CCD) was applied to fit the polynomial equation to the experimental data. The effects of variables such as concentration of Cyanex 272 (0.23-0.57 mol.L-1), pH (2.0-5.0) and O/A (1-3) on the extraction efficiency and separation factor of Pr and Nd were studied. The order of the effect of the variables on the extraction efficiency was opposite to the effect of the variables on the separation factor. The numerical optimization was performed to maximize the operational selectivity of the studied system. The calculated results for Nd and Pr extraction percentages were 71.7% and 62.5%, respectively and the separation factor was 1.54. Also, it was found the stripping of Pr and Nd ions from the loaded organic phase can be effectively conducted under the 0.1 mol/L hydrochloric acid solution within a contact time of 5 min conditions. The studied system showed an efficient performance in both extraction and striping processes of Pr and Nd at investigated condition. 

کلیدواژه‌ها [English]

  • Solvent extraction
  • Praseodymium
  • Neodymium
  • Chloride solution
  • Cyanex 272
  • Response surface methodology
[1]        Xie F, Zhang TA, Dreisinger D, Doyle F. A critical review on solvent extraction of rare earths from aqueous solutions. Miner Eng. 2014;56:10-28.
[2]        Naumov A. Review of the world market of rare-earth metals. Russ J Non-Ferr Met. 2008;49(1):14-22.
[3]        Asadollahzadeh M, Torkaman R, Torab-Mostaedi M, Hemmati A, Ghaemi A. Efficient recovery of neodymium and praseodymium from NdFeB magnet-leaching phase with and without ionic liquid as a carrier in the supported liquid membrane. Chem Pap. 2020;74(12):4193-201.
[4]        Zhang J, Zhao B, Schreiner B. Separation hydrometallurgy of rare earth elements. Berlin: Springer; 2016.
[5]        Saneie M, Aboutalebi M, Moghaddam J. Investigation on the Zn separation behavior from aqueous solution containing Mg from a leaching solution of zinc filter cake by Solvent Extraction. Metall Eng. 2019;22(2):96-103.
[6]        Khanmohammadi S, Ojaghi-Ilkhchi M, Farrokhi-Rad M. An Overview on the Recycling of Lithium-Ion Batteries via Hydrometallurgical Method. Metall Eng. 2016;19(4):260-72.
[7]        Banda R, Jeon HS, Lee MS. Solvent extraction separation of La from chloride solution containing Pr and Nd with Cyanex 272. Hydrometallurgy. 2012;121:74-80.
[8]        Liu Y, Jeon HS, Lee MS. Solvent extraction of Pr and Nd from chloride solutions using ternary extractant system of Cyanex 272, Alamine 336 and TBP. J Ind Eng Chem. 2015;31:74-9.
[9]        Padhan E, Sarangi K. Recovery of Nd and Pr from NdFeB magnet leachates with bi-functional ionic liquids based on Aliquat 336 and Cyanex 272. Hydrometallurgy. 2017;167:134-40.
[10]      Kumari A, Sahu KK, Sahu SK. Solvent Extraction and Separation of Nd, Pr and Dy from Leach Liquor of Waste NdFeB Magnet Using the Nitrate Form of Mextral® 336At in the Presence of Aquo-Complexing Agent EDTA. Metals. 2019;9(2):269.
[11]      Safarzadeh MS, Agarwal V, Hayes L. New insights into the separation of Nd from Pr in hydrochloric and sulfuric acid solutions. Polyhedron. 2018;153:82-7.
[12]      Banda R, Jeon H, Lee M. Solvent extraction separation of Pr and Nd from chloride solution containing La using Cyanex 272 and its mixture with other extractants. Sep Purif Technol. 2012;98:481-7.
[13]      Liu Y, Jeon HS, Lee MS. Solvent extraction of Pr and Nd from chloride solution by the mixtures of Cyanex 272 and amine extractants. Hydrometallurgy. 2014;150:61-7.
[14]      Quinn JE, Soldenhoff KH, Stevens GW, Lengkeek NA. Solvent extraction of rare earth elements using phosphonic/phosphinic acid mixtures. Hydrometallurgy. 2015;157:298-305.
[15]      Matsuyama H, Azis A, Fujita M, Teramoto M. Analysis of extraction rate and selectivity of Pr/Nd separation by solvent extraction in the presence of diethylenetriaminepentaacetic acid in aqueous phase. J Chem Eng Japan. 1995;28(6):830-6.
[16]      Banda RJ, Jeon HS, Lee MS. Extraction behavior of REEs (La, Pr, and Nd) in the presence of EDTA from chloride solutions. Korean J Met Mater. 2013;51(6):421-7.
[17]      Bezerra MA, Ferreira SLC, Novaes CG, dos Santos AMP, Valasques GS, da Mata Cerqueira UMF, et al. Simultaneous optimization of multiple responses and its application in Analytical Chemistry–A review. Talanta. 2019;194:941-59.
[18]      Saeidi M, Ghaemi A, Tahvildari K, Derakhshi P. Exploiting response surface methodology (RSM) as a novel approach for the optimization of carbon dioxide adsorption by dry sodium hydroxide. J Chin Chem Soc. 2018;65(12):1465-75.
[19]      Lundstedt T, Seifert E, Abramo L, Thelin B, Nyström Å, Pettersen J, et al. Experimental design and optimization. Chemom Intell Lab Syst. 1998;42(1-2):3-40.
[20]      Bezerra MA, Santelli RE, Oliveira EP, Villar LS, Escaleira LA. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta. 2008;76(5):965-77.
[21]      Gorzin H, Ghaemi A, Hemmati A, Maleki A. Equilibrium and kinetics of praseodymium and neodymium extraction from NdFeB magnet-leaching solutions with [R4N+][NO3−] using single drop column. J Mol Liq. 2020;318:114376.
[22]      Kumar A, Thakur A, Panesar PS. A comparative study on experimental and response surface optimization of lactic acid synergistic extraction using green emulsion liquid membrane. Sep Purif Technol. 2019;211:54-62.
[23]      Kashi E, Habibpour Z, Maleki A, Gorzin H. Effective parameters interaction study for cerium extraction from sulfuric media using Di-(2-ethylhexyl) phosphoric acid. Chem Chem Technol. 2017;11:144-51.
[24]      Molaei A, Kökkılıç O, Waters KE. Selective removal of copper and nickel ions from synthetic process water using predispersed solvent extraction. Can J Chem Eng. 2019;97(1):247-55.
[25]      Abbasi A, Rahbar-Kelishami A, Ghasemi MJ. Development of a microfluidic-chip system based on parallel flow for intensified Gd (III) extraction from nitrate media using cationic extractant. J Rare Earth. 2018;36(11):1198-204.
[26]      Hemmati A, Ghaemi A, Asadollahzadeh M. RSM and ANN modeling of hold up, slip, and characteristic velocities in standard systems using pulsed disc-and-doughnut contactor column. Sep Sci Technol. 2020:1-16.
[27]      Ayanda OS, Adekola FA, Baba AA, Ximba BJ, Fatoki OS. Application of Cyanex® extractant in Cobalt/Nickel separation process by solvent extraction. Int J Phys Sci. 2013;8(3):89-97.
[28]      Goto T, Smutz M. Separation factors for solvent extraction processes: The system of 1 M di-(2-ethyl-hexyl) phosphoric acid (in amsco 125-82)-Pr-Nd salts as an example. J Inorg Nucl Chem. 1965;27(6):1369-79.