اثر میزان کاربید تنگستن بر درصد تخلخل، ریزساختار و رفتار مکانیکی فوم فولادی تولید شده به روش متالورژی پودر با استفاده از فضاساز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی صنایع، دانشکده مهندسی، دانشگاه صنعتی قوچان، قوچان، ایران.

2 فارغ‌التحصیل کارشناسی مهندسی صنایع، دانشکده مهندسی، دانشگاه صنعتی قوچان، قوچان، ایران.

3 مدیر بخش تحقیق و توسعه شرکت متالورژی پودر مشهد، مشهد، ایران.

چکیده

در پژوهش حاضر، فوم‌های فولادی به روش متالورژی پودر و با استفاده از دانه‌های اوره به عنوان فضاساز به صورت موفقیت‌آمیز تولید شدند و اثر افزودن کاربید تنگستن (0، 5/0، 1، 2 و 4 درصد وزنی) به فولاد سازنده دیواره سلول‌ها بر روی میزان تخلخل، ریزساختار دیواره سلول‌ها و ویژگی‌های مکانیکی فوم‌های تولیدی مطالعه شد. ریزساختار دیواره سلول‌ها توسط میکروسکوپ نوری و میکروسکوپ الکترونی روبشی مجهز به نرم‌افزار پردازش تصویر ارزیابی گردید. افزایش درصد وزنی کاربید تنگستن تاثیر اندکی بر روی کسر سطحی و میزان کرویت سلول‌ها دارد و این در حالی است که کسر سطحی و میزان کرویت حفرات تشکیل شده در دیواره سلول‌ها شدیداً تحت تاثیر افزودن کاربید تنگستن است. رفتار مکانیکی فوم‌های فولادی تولید شده توسط انجام آزمون فشار تعیین شدند. درصد تخلخل فوم‌های تولیدی بین 73 تا 80 درصد است و با افزایش میزان کاربید تنگستن، درصد تخلخل کاهش می‌یابد. نتایج ارزیابی‌های میکروسکوپی حاکی از آن است که ریزساختار دیواره سلول‌ها شامل فریت و پرلیت است که ذرات کاربید تنگستن به صورت یکنواخت درون آن توزیع یافته‌اند. منحنی تنش- کرنش فوم‌های فولادی دارای ناحیه الاستیک، ناحیه پلاتو طولانی دندانه اره‌ای و نقطه شکست است و با افزایش درصد وزنی کاربید تنگستن، منحنی‌ها به سمت بالا شیفت می‌یابند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of WC content on porosity percentage, microstructure, and mechanical behavior of steel foam manufactured through powder metallurgy using space holder technique

نویسندگان [English]

  • Hamid Sazegaran 1
  • Zahra Vali Pour 2
  • Farhad Khoram Shahi 3
1 Assistant Professor, Department of Industrial Engineering, Engineering Faculty, Quchan University of Technology, Quchan, Iran.
2 B.Sc., Department of Industrial Engineering, Engineering Faculty, Quchan University of Technology, Quchan, Iran.
3 M.Sc., Research and Development Manager of Mashhad Powder Metallurgy Company, Mashhad, Iran.
چکیده [English]

In this present work, steel foams were successfully manufactured through powder metallurgy route using urea granules as space holder and influences of WC content (0, 0.5, 1, 2, and 4 wt. %) added into cell walls were studied on porosity percentage, microstructure of cell walls, and mechanical properties of steel foams. The microstructure of cell walls was evaluated using optical microscope and scanning electron microscope equipped with image processing software. Increasing WC has little effect on surface fraction and sphericity of cell, while the surface fraction and sphericity of the pores formed into the cell walls are strongly affected by the addition of WC. The mechanical behavior of the steel foams was conducted using compression test. The porosity of the steel foams is between 73 % and 80 % and with the increase in WC content, the porosity percentage decreases. The results of microscopic evaluations indicated that the microstructure of cell walls contains ferrite and pearlite, with tungsten carbide particles distributed uniformly. The stress vs. strain curves of the steel foam have an elastic region, a long saw-tooth plateau region, and a fracture point and the curves are shifted upward as the WC content increased.

کلیدواژه‌ها [English]

  • Steel foam
  • WC
  • Space holder technique
  • Microstructure of cell wall
  • Compressive behavior
 [1] M. F. Ashby, A. G. Evans, N. A. Fleck, L. J. Gibson, J. W. Hutchinson, H. N. G. Wadley, Metal Foams: A Design Guide, p. 125, Butterworth-Heinemann, Massachusetts, 2000.
[2] H. P. Degischer, B. Kriszt, Handbook of Cellular Metals, Production, Processing and Applications, p. 87, Wiley-VCH/Verlag GmbH, Weinheim, 2002.
[3] J. Banhart, "Manufacture, characterization and application of cellular metals and metal foams", Progress in Materials Science, Vol. 46, pp. 559-632, 2001.
[4] Y. Bienvenu, "Application and future of solid foams", Comptes Rendus Physique, , Vol. 15 (8-9), pp. 719-730, 2014.
[5] B. H. Smith, S. Szyniszewski, J. F. Hajjar, B. W. Schafer, S. R. Arwade, "Steel foam for structures: A review of applications, manufacturing and material properties", Journal of Constructional Steel Research, Vol. 71, pp. 1-10, 2012.
[6] C. Park, S. R. Nutt, "PM synthesis and properties of steel foams", Materials Science and Engineering: A, Vol. 288, pp. 111-118, 2000.
[7] C. Park, S. R. Nutt, "Effects of process parameters on steel foam synthesis", Materials Science and Engineering: A, Vol. 297, pp. 62-68, 2001.
[8] M. H. Golabgir, R. Ebrahimi-Kahrizsangi, O. Torabi, H. Tajizadegan, A. Jamshidi, "Fabrication and evaluation of oxidation resistance performance of open-celled Fe(Al) foam by space-holder technique", Advanced Powder Technology, Vol. 25, pp. 960-967, 2014.
[9] H. Sazegaran, A. R. Kiani-Rashid, J. Vahdati Khaki, "Effects of copper content on the shell characteristics of hollow steel spheres manufactured using an advanced powder metallurgy technique", International Journal of Minerals, Metallurgy and Materials, Vol. 23 (4), pp. 434-441, 2016.
[10] H. Sazegaran, A. R. Kiani-Rashid, J. Vahdati Khaki, "Effects of sphere size on the microstructure and mechanical properties of ductile iron–steel hollow sphere syntactic foams", International Journal of Minerals, Metallurgy and Materials, Vol. 23 (6), pp. 676-682, 2016.
[11] N. Bekoz, E. Oktay, "Effects of carbamide shape and content on processing and properties of steel Foams", Journal of Materials Processing and Technology, Vol. 212, pp. 2109-2116, 2012.
[12] N. Bekoz, E. Oktay, "Mechanical properties of low alloy steel foams: Dependency on porosity and pore size", Materials Science and Engineering: A, Vol. 576, pp. 82-90, 2013.
[13] N. Bekoz, E. Oktay, "High temperature mechanical properties of low alloy steel foams produced by powder metallurgy", Materials and Design, Vol. 53, pp. 482-489, 2014.
[14] Nuray Bekoz, Enver Oktay, "The role of pore wall microstructure and micropores on the mechanical properties of Cu–Ni–Mo based steel foams", Materials Science and Engineering: A, Vol. 612, pp. 387-397, 2014.
[15] I. Mutlu, E. Oktay, "Mechanical properties of sinter-hardened Cr–Si–Ni–Mo based steel foam", Materials and Design, Vol. 44, pp. 274-282, 2013.
[16] D. P. Mondal, H. Jain, S. Das, A. K. Jha, "Stainless steel foams made through powder metallurgy route using NH4HCO3 as space holder", Materials and Design, Vol. 88, pp. 430-437, 2015.
[17] H. Jain, G. Gupta, R. Kumar, D. P. Mondal, "Microstructure and compressive deformation behavior of SS foam made through evaporation of urea as space holder", Materials Chemistry and Physics, Vol. 223, pp. 737-744, 2019.
[18] T. Shimizu, K. Matsuzaki, H. Nagai, N. Kanetake, "Production of high porosity metal foams using EPS beads as space holders", Materials Science and Engineering: A, Vol. 558, pp. 343-348, 2012.
[19] Y. Bienvenu, "Application and future of solid foams", Comptes Rendus Physique, Vol. 15 (8-9), pp. 719-730, 2014.
[20] Y. Hangai, T. Morita, T. Utsunomiya, "Fabrication of Al foam with harmonic structure by Cu addition using sintering and dissolution process", Materials Letters, Vol. 230, pp. 120-122, 2018.
[21] M. Mirzaei, M. H. Paydar, "A novel process for manufacturing porous 316 L stainless steel with uniform pore distribution", Materials and Design, Vol. 121, pp. 442-449, 2017.
[22] M. Mirzaei, M. H. Paydar, "Fabrication and Characterization of Core–Shell Density-Graded 316L Stainless Steel Porous Structure", Journal of Materials Engineering and Performance, Vol. 28 (1), pp. 221-230, 2019.
[23] I. Mutlu, E. Oktay, "Production and aging of highly porous 17-4 PH stainless steel", Journal of Porous Materials, Vol. 19 (4), pp. 433-440, 2012.
[24] H. Sazegaran, M. Hojati, "Effects of copper content on microstructure and mechanical properties of open-cell steel foams", International Journal of Minerals, Metallurgy, and Materials, Vol. 26 (5), pp. 588-596, 2019.
[25] Ha. Sazegaran, A. Feizi, M. Hojati, "Effect of Cr Contents on the Porosity Percentage, Microstructure, and Mechanical Properties of Steel Foams Manufactured by Powder Metallurgy", Transactions of the Indian Institute of Metals, pp. 1-8, 2019.
[26] M. Hasan, J. Zhao, Z. Huang, L. Chang, H. Zhou, Z. Jiang, "Analysis of sintering and bonding of ultrafine WC powder and stainless steel by hot compaction diffusion bonding", Fusion Engineering and Design, Vol. 133, pp. 39-50, 2018.
[27] S. H. Chang, S. L. Chen, "Characterization and properties of sintered WC–Co and WC–Ni–Fe hard metal alloys", Journal of Alloys and Compounds, Vol. 585, pp. 407-413, 2014.
[28] R. O. Calderon, A. Agna, U. U. Gomes, W. D. Schubert, "Phase formation in cemented carbides prepared from WC and stainless steel powder - An experimental study combined with thermodynamic calculations", International Journal of Refractory Metals and Hard Materials, Vol. 80, pp. 225-237, 2019.
[29] A. Liu, M. Guo, H. Hu, "Improved Wear Resistance of Low Carbon Steel with Plasma Melt Injection of WC Particles", Journal of Materials Engineering and Performance, Vol. 19 (6), pp. 848-851, :"B Lotus";mso-ansi-language:EN-US; mso-fareast-language:EN-US;mso-bidi-language:FA;mso-no-proof:no'>