بررسی اثر TiO2 بر خواص دفع هیدروژن از Al3Mg2

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد،‌ دانشکده مهندسی متالورژی و مواد، پردیس دانشکده های فنی، دانشگاه تهران،‌ تهران، ایران.

2 2- دانشیار، دانشکده مهندسی متالورژی و مواد، پردیس دانشکده های فنی، دانشگاه تهران،‌ تهران، ایران.

3 استادیار‌، گروه مهندسی متالورژی و مواد، دانشگاه صنعتی همدان،‌ همدان، ایران.

چکیده

مطالعات نشان داده‌اند که ترکیبات پایه منیزیم می‌توانند در ذخیره سازی هیدروژن در حالت جامد استفاده شوند. در این پژوهش ترکیب بین فلزی Al3Mg2 به روش ریخته‌گری تهیه گردید. سپس نمونه‌هایی از این ترکیب تحت اتمسفر هیدروژن و در زمان‌های مختلف آسیا‌کاری شدند. نتایج حاصل از آزمایش گرماسنجی جرمی و پراش اشعه ایکس نشان داد که بیشترین میزان ذخیره سازی هیدروژن پس از 2 ساعت آسیا‌کاری در محیط این گاز بوده و کاهش وزن حدود 4/2 درصد در اثر دفع هیدروژن از نمونه مذکور حاصل شد. این میزان کاهش در طی سه مرحله در محدوده دمایی 150، 220 و360 درجه سانتی‌گراد اتفاق افتاد. در مرحله بعدی Al3Mg2 حاصل از ریخته‌گری تحت اتمسفر هیدروژن و با حضور TiO2 به عنوان کاتالیزور در زمان‌های مختلف آسیا‌کاری شد. نتایج حاصل از آزمایش گرماسنجی جرمی و پراش اشعه ایکس نشان داد که بیشترین میزان ذخیره سازی هیدروژن در این ترکیب پس از 2 ساعت در محیط هیدروژن بوده و کاهش وزن حدود 6/2 درصد وزنی در اثر دفع هیدروژن حاصل شد که نزدیک به مقدار تئوری است.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of TiO2 on Hydrogen Desorption Properties of Al3Mg2

نویسندگان [English]

  • Nima Nazeri 1
  • Shahram Raygan 2
  • Mehdi Pourabdoli 3
1 MSc, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
2 Associate Professor, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.
3 Assistance Professor, Department of Material Engineering, Hamedan University of Technology, Hamedan, Iran.
چکیده [English]

Studies have shown that magnesium-based compounds can be used as solid state hydrogen storage materials. In this study, the Al3Mg2 intermetallic compound was prepared by casting method. Then samples of this compound were ball milled under hydrogen atmosphere at different times. Results of thermo-gravimetry and X-ray diffraction analyses showed that the highest amount of hydrogen storage was achieved after 2 h of ball milling under hydrogen atmosphere. A weight loss of about 2.4% was achieved from mentioned sample that is the highest among the samples. This weight loss occurred during three steps at temperatures of 150, 220 and 360 °C. In the next step, Al3Mg2 ingot along with TiO2 (as catalyst) was ball milled at different times under hydrogen atmosphere. The results of thermo-gravimetry and x-ray diffraction tests showed that the highest amount of hydrogen storage in this sample was achieved after 2 hours hydrogenation and a weight loss of about 2.6% by weight was obtained due to hydrogen desorption, which is close to the theoretical value.

کلیدواژه‌ها [English]

  • "Complex metallic alloys"
  • "Al3Mg2"
  • "Magnesium hydride"
  • "Hydrogen storage"
1- S. Satyapal, J. Petrovic, C. Read, G. Thomas, G. Ordaz, The U. S. Department of Energy’s National Hydrogen Storage Project: Progress towards meeting hydrogen-powered vehicle requirement, Catalysis Today, Vol 120, p 246, 2007.

2-U. Eberle G. ArnoldR. von Helmolt, Hydrogen storage in metal–hydrogen systems and their derivatives, Journal of Power Sources, Volume 154, Issue 2, 2006, pp. 456–460.

3-B. Dubost, J-M. Lang, M. Tanaka, P. Sainfort, M. Audier, , Large AlCuLi single quasicrystals with triacontahedral solidification morphology, Nature Vol 324, 1986, pp. 48 – 50.

4-M.Y. Song, Phase separation of Mg2Ni by hydriding–dehydriding cycling, Journal of Alloys and Compounds, Vol 282, Issues 1–2, 1999, pp. 297–301.

5-H. ImamuraN.SakasaiY.Kajii, Hydrogen absorption of Mg-Based composites prepared by mechanical milling: Factors affecting its characteristics, Journal of Alloys and Compounds, Vol 232, Issues 1–2, 1996, pp. 218-223.
6-P. MandalK. DuttaK. Ramakrishna, Synthesis, characterization and hydrogenation behaviour of Mg-ξwt.%FeTi(Mn) and La2Mg17—ξwt.%LaNi5—new hydrogen storage composite alloys, Journal of Alloys and Compounds, Vol 184, Issue 1, 1992, pp. 1-9.
7-G. LiangS. Boily, J. HuotA.VanNeste,R. Schulz, Hydrogen absorption properties of a mechanically milled Mg–50 wt.% LaNi5 composite, Journal of Alloys and Compounds, Vol 268, Issues 1–2, 1998, pp. 302–307.
8- K. J. GrossP.SpatzA.ZüttelL.Schlapbach, Mg composites for hydrogen storage The dependence of hydriding properties on composition, Journal of Alloys and Compounds, Vol 261, Issues 1–2, 1997, pp. 276-280.
9- Z. Ye, L.C. Erickson, B. Hjörvarsson, Hydride formation in MgZrFe1.4Cr0.6  composite material, Journal of Alloys and Compounds, Vol 209, Issues 1–2, 1994, pp. 117-124.
10-M. KhrussanovaM. TerzievaP. Peshev , I. Konstanchuk , E. Ivanov, Hydriding of mechanically alloyed mixtures of magnesium with MnO2, Fe2O3 and NiO, Materials Research Bulletin, Vol 26, Issue 7, 1991, pp. 561-567.
11-C.IwakuraY. FukumotoM. MatsuokaT. KohnoK.Shinmou, Electrochemical characterization of hydrogen storage alloys modified with metal oxides, Journal of Alloys and Compounds, Vol 192, Issues 1–2, 1993, pp. 152-154.

12-A. P. Tsai, J. Q. Guo, E. Abe, H. Takakura, T. J. Sato,Alloys: A stable binary quasicrystal, Nature, Vol 408, 2000, pp. 537-538.

13-F.C GennariF.J CastroG Urretavizcaya, Hydrogen desorption behavior from magnesium hydrides synthesized by reactive mechanical alloying, Journal of Alloys and Compounds, Vol321, Issue 1, 2001, pp. 46–53.
14-N. CuiJ.L. Luo, Effects of oxide additions on electrochemical hydriding and dehydriding behavior of Mg2Ni-type hydrogen storage alloy electrode in 6 M KOH solution, ElectrochimicaActa, Vol 44, Issue 5, 1998, pp. 711–720.
15-P Wang, A.M WangB.Z DingZ.Q Hu, Mg–FeTi1.2 (amorphous) composite for hydrogen storage, Journal of Alloys and Compounds, Vol 334, Issues 1–2, 2002, pp. 243–248.
16-P Wang , A.M WangH.F Zhang, B.Z Ding, Z.Q Hu, Hydrogenation characteristics of Mg–TiO2 (rutile) composite, Journal of Alloys and Compounds, Vol 313, Issues 1–2, 2000, pp. 218–223.
17-Y.Q. HuH.F. Zhang, A.M. Wang, B.Z. DingZ.Q. Hu, Preparation and hydriding/dehydriding properties of mechanically milled Mg–30 wt% TiMn1.5 composite, Journal of Alloys and Compounds, Vol 354, Issues 1–2, 2003, pp. 296–302.

18-Y. Q. Hu, H. F. Zhang, C. Yan, L. Ye, B. Z. Ding, Z. Q. Hu, Hydrogenation mechanisms of Mg during reaction ball milling, Journal of Materials Science, , Vol 39, Issue 4, 2004, pp 1455–1457.

19-D.A. SmallG.R. MacKayR.A. Dunlap, Hydriding reactions in ball-milled titanium, Journal of Alloys and Compounds, Vol 284, Issues 1–2, 1999, pp. 312–315.
20-M.A. Bab L. Mendoza-ZélisL.C.Damonte, NanocrystallineHfN produced by mechanical milling: Kinetic aspects, ActaMaterialia, Vol 49, Issue 20, 2001, pp. 4205–4213.
21-W. Oelerich, T. KlassenR. Bormann, Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials, Journal of Alloys and Compounds, Vol 315, Issues 1–2, 2001, pp. 237–242.
22-A. ShahcheraghiF. DehghaniK. Raeissi, A. SaatchiM. H. Enayati, Effects of TiO2 additives on electrochemical hydrogen storage properties of nanocrystaline/amorphous Mg2Ni intermetallic alloys, Vol 10, Number 1,IJMSE, 2013, pp. 1-9.
23-T.Schober, On the activation of FeTi for hydrogen storage, Journal of the Less Common Metals, Vol89, Issue 1, 1983, pp. 63-70.
24-J. M. Dubois, E. Belin-Ferre, Complex Metallic Alloys: Fundamentals and Applications, 2011 WILEY-VCH Verlag GmbH & Co. KGaA,Weinheim.
25-D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, Metallic phase with long-range orientationalorder and no translational symmetry, Phys. Rev. Lett. Vol. 53, 1984, pp.1951-1954.
26-J.F. Fernández, F. LeardiniJ. BodegaC. SánchezJ.-M. Joubert, F. Cuevas, E. LeroyM. BariccoM. Feuerbacher, Interaction of hydrogen with the β-Al3Mg2 complex metallic alloy: Experimental reliability of theoretical predictions, Journal of Alloys and Compounds, Vol 472, Issues 1–2, 2009, pp. 565–570.
27- J.C. Crivello , T. NobukiT. Kuji, Improvement of Mg–Al alloys for hydrogen storage applications, International Journal of Hydrogen Energy, Vol 34, Issue 4, 2009, pp. 1937–1943.

28- P. K. Mallick, Materials, Design and Manufacturing for Lightweight Vehicles, 1st ed.,Woodhead, 2010.

29-N.Eisenreich,Armin Keßler, Andreas Koleczko, Volker Weiser, On the kinetics of AlH3 decomposition and the subsequent Al oxidation, International Journal of Hydrogen Energy, Vol 39, Issue 11, 2014, pp. 6286–6294.