تاثیر افزودن نایوبیم و دمای آستنیته بر ریزساختار و خواص مکانیکی حاصل از فرآیند مارتنزیتی یک فولاد کم‌کربن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی مواد، گروه مهندسی مواد، دانشکده فنی و مهندسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 استادیار، گروه مهندسی مواد، دانشکده فنی و مهندسی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

چکیده

در این پژوهش تاثیر افزودن نایوبیم و دمای آستنیته بر خواص مکانیکی و ریزساختار فولادی کم‌کربن پس از اعمال فرآیند مارتنزیتی مورد بررسی قرار گرفته است. نمونه‌ها پس از ریخته‌گری و نورد داغ؛ در دماهای 900، 1000، 1100 و C 1200 به‌مدت یک ساعت آستنیته و سپس در آب کوئنچ شدند که حاصل آن ریزساختار مارتنزیتی (همراه مقدار کمی فریت ویدمن‌اشتاتن) بود. بیشینه سختی در نمونه حاوی نایوبیم آستنیته‌شده در دمای C 1200 حاصل شد. سختی این نمونه 238 ویکرز و استحکام کششی آن نیز MPa 859 بود. با این حال، این نمونه افزایش طول نسبی ناچیزی در حد 1 درصد از خود نشان داد. در مرحله بعد، کاهش 50 درصدی ضخامت نمونه‌های بدون نایوبیم و حاوی نایوبیم به‌وسیله نورد سرد و آنیل آنها به مدت min 90 در دمای C 600 انجام گرفت. بررسی‌های ریزساختاری با میکروسکوپ‌های نوری و الکترونی روبشی (SEM) نشان داد که ریزساختار نمونه بدون نایوبیم کاملاً آنیل و دانه‌ها هم‌محور شده‌اند و تاثیر کل فرآیند مارتنزیتی در آن خنثی شده است. آزمون کشش نیز نشان‌دهنده مشابهت استحکام نمونه آنیل‌شده و نورد داغ شده بود. از طرف دیگر، در نمونه‌ حاوی نایوبیم، ساختاری ریزدانه حاصل شد که سختی آن (در مقایسه با حالت کوئنچ‌شده) تا حد زیادی حفظ شده بود. بررسی نتایج آزمون کشش نیز نشان داد که فرآیند مارتنزیتی در نمونه‌ نایوبیم‌دار بسیار موثر بوده به گونه‌ای که پس از آنیل، استحکام کششی همچنان بیش از MPa 700 بود. علیرغم استحکام بالا، افزایش طول نسبی این نمونه در سطحی بیش از 15 درصد حفظ شد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of Nb addition and austenitizing temperature on the mechanical properties and microstructure of a low-carbon steel after martensite process

نویسندگان [English]

  • Nasim Narimani-Rad 1
  • Hamidreza Najafi 2
  • M.Reza Afshar 2
1 B.Sc., Department of Materials Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2 Assistant Professor, Department of Materials Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
چکیده [English]

The effects of niobium addition (about 0.15 wt.%) and austenitizing temperature on the mechanical properties and microstructure of a low carbon steel (containing less than 0.2 wt.% carbon) after martensite process were investigated in this research. After casting and hot rolling at 1050 C, the samples were austenitized at 900, 1000, 1100 and 1200 C for one hour followed by quenching in water. The as-quenched microstructures consisted of martensite along with a small amount of widmanstatten ferrite. The maximum hardness and strength were obtained from the Nb-containing sample austenitized at 1200 °C. The hardness and tensile strength were 238 Vickers and 859 MPa, respectively. However, this sample showed an elongation of less than 1%. After 50% reduction in the thickness of the as-quenched samples by cold rolling, annealing was carried out at 600 °C for 90 min. Optical and scanning electron microscopy (SEM) showed that the microstructure of the niobium-free sample was completely annealed and the martensite process effects were eliminated. The tensile strength of this sample was approximately the same as that of the hot rolled specimen. On the other hand, the Nb-containing sample exhibited a fine-grained microstructure. In comparison with the as-quenched condition, the hardness of the microalloyed specimen was essentially preserved after martensite process. The results of the tensile test also revealed that the martensite process led to a good combination of strength and elongation in the microalloyed specimen because its tensile strength and elongation were higher than 700 MPa and 15%, respectively.

کلیدواژه‌ها [English]

  • Martensite Process
  • Microalloyed Steel
  • Grain Refinement
  • Cold Rolling
  • Annealing
[1]Hertzberg RW. Deformation and Fracture Mechanics of Engineering Materials. 4th ed. New York: John Wiley & Sons; 1996.
[2] Korchynsky M. Advanced metallic structural materials and a new role for microalloyed steels. Materials Science Forum. 2009;500-501:471-80.
[3]Han BQ, Yue S. Processing of ultrafine ferrite steels. Journal of Materials Processing Technology. 2003;136:100-4.
[4]Song R, Ponge D, Raabe D, Speer JG, Matlock DK. Overview of processing, microstructure and mechanical properties of ultrafine grained bcc steels. Materials Science and Engineering: A. 2006;441(1):1-17.
[5]Tsuji N, Ueji R, Minamino Y, Saito Y. A new and simple process to obtain nano-structured bulk low-carbon steel with superior mechanical property. Scripta Materialia. 2002;46(4):305-10.
[6]Sharifi EM, Kermanpur A, Karimzadeh F. The effect of thermomechanical processing on the microstructure and mechanical properties of the nanocrystalline TiNiCo shape memory alloy. Materials Science and Engineering: A. 2014;598:183-9.
[7]Ueji R, Tsuji N, Minamino Y, Koizumi Y. Ultragrain refinement of plain low carbon steel by cold-rolling and annealing of martensite. Acta Materialia. 2002;50:4177-89.
[8] Mirzadeh H, Alibeyki M, Najafi M. Unraveling the initial microstructure effects on mechanical properties and work-hardening capacity of dual-phase steel. Metallurgical Transactions A. 2017;48:4565-73.
[9]Lv Z, Sun SH, Wang ZH, Qv MG, Jiang P, Fu WT. Effect of alloying elements addition on coarsening behavior of pearlitic cementite particles after severe cold rolling and annealing. Materials Science and Engineering: A. 2008;489(1):107-12.
[10] Najafi M, Mirzadeh H, Alibeyki M. Toward unraveling the mechanisms responsible for the formation of ultrafine grained microstructure during tempering of cold rolled martensite. Materials Science and Engineering A 2016;670:252-5.
[11] Mohrbacher H. Strategies for producing dual phase steel using niobium microalloying. In: T'11 M, editor. Materials Science and Technology Conference and Exhibition 2011; October 16-20 Ohio, USA: MTS & T'11; 2011.
[12] Lan HF, Liu WJ, Liu XH. Ultrafine ferrite grains produced by tempering cold-rolled martensite in low carbon and microalloyed steels. ISIJ International. 2007;47:1652-7.
[13]Rao MP, Sarma VS, Sankaran S. Development of high strength and ductile ultra fine grained dual phase steel with nano sized carbide precipitates in a V–Nb microalloyed steel. Materials Science and Engineering: A. 2013;568:171-5.
[14] Malekjani S, Timokhina IB, Sabirov I, Hodgson PD. Deformation behaviour of ultrafine grained steel produced by cold rolling of martensite. Canadian Metallurgical Quarterly. 2009;48:229-36.
[15] نریمانی راد نسیم. تاثیر مقدار نایوبیم بر خواص مکانیکی و ریزساختار حاصل از تغییر شکل شدید مارتنزیت کم‌کربن. پایان‌نامه کارشناسی ارشد. دانشگاه آزاد اسلامی، واحد علوم و تحقیقات، تهران، ایران. 1397. 
 
[16]Jonas JJ, Weiss I. Effect of precipitation on recrystallization in microalloyed steels. Metal Science. 1979;13(3-4):238-45.
[17]Akben MG, Weiss I, Jonas JJ. Dynamic precipitation and solute hardening in A V microalloyed steel and two Nb steels containing high levels of Mn. Acta Metallurgica. 1981;29(1):111-21.
[18] Kwon O, DeArdo AJ. Interactions between recrystallization and precipitation in hot-deformed microalloyed steels. Acta Metallurgica et Materialia. 1991;39(4):529-38.
[19]Luton MJ, Dorvel R, Petkovic RA. Interaction between deformation, recrystallization and precipitation in niobium steels. Metallurgical Transactions A. 1980;11:411-20.
[20] Robiller G, Meyer L. Recrystallization and grain growth multi-phase and particle containing materials. In: Hansen N, Jones A.N, T L, editors. 1st Riso International Symposium on Metallurgy and Materials Science; 8-12 september; Riso National Laboratory, Rosklide, Denmark: Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi; 1980. p. 311.
[21] Tiitto K, Fitzsimons G, DeArdo AJ. The effect of dynamic precipitation and recrystallization on the hot flow behavior of a Nb-V microalloyed steel. Acta Metallurgica. 1983;31(8):1159-68.
[22] DeArdo AJ, Hua M, Garcia CI. Basic metallurgy of modern niobium steels. In: TMS, editor. International Symposium on Niobium Microalloyed Sheet Steel for Automotive Applications; December 5 - 8; Araxa, Brazil. TMS; 2005. p. 499-549.
 
[23] LeBon AB, de Saint-Martin LN. Using laboratory simulations to improve rolling schedules and equipment. In proceedings of the international symposium on high-strength, low-alloy steels. In: Union Carbide Corporatio MD, editor. International Symposium on High-strength, Low-alloy Steels (Microalloying 75); October 1-3; Washington D.C., USA: ASM; 1975. p. 90-9.
[24] Mangonon PL, Heitmann WE. Subgrain and precipitation strengthening effects in hot-rolled columbium-bearing steels. In: Union Carbide Corporatio MD, editor. International Symposium on High-strength, Low-alloy Steels (Microalloying 75); October 1-3; Washington D.C., USA: ASM; 1975. p. 59-70.
[25] Kozasu I, Ouchi C, Sampei T, Okita T. Hot rolling as a high temperature thermo-mechanical process. In: Union Carbide Corporatio MD, editor. International Symposium on High-strength, Low-alloy Steels (Microalloying 75); October 1-3; Washington D.C., USA: ASM; 1975. p. 120-34.
[26] Sekine H, Maruyama T. Retardation of recrystallization of austenite during hot-rolling in Nb-containing low-C steels. Transactions of the Iron and Steel Institute of Japan. 1976;16:427-36.
[27] Shaughnessy RN, Witty RW, Ackert RJ, inventors; Algoma Steel Corp Ltd, assignee. Method for the production of high strength notch tough steel1973.
[28] Heitmann WE, Oakwood TG, Gray JM, Wilson WG. An economical alternative to control-rolled plate for pipe allocations.  13th Annual Conference of Metallurgists; August 25-28; Toronto, Ontario, Canada: MetSoc of CIM; 1974.
[29] McCutcheon DB, Trumper TW, Embury JD. Controlled rolling of acicular ferrite plate.  Journée Internationale de Sidérurgie; October 4; Paris, France1974.
[30]Ueji R, Tsuji N, Minamino Y, Koizumi Y. Effect of rolling reduction on ultrafine grained structure and mechanical properties of low-carbon steel thermomechanically processed from martensite starting structure. Science and Technology of Advanced Materials. 2004;5(1-2):153-62.
[31] Tianfu J, Yuwei G, Guiying Q, Qun L, Wang TS, Wei W, et al. Nanocrystalline steel processed by severe rolling of lath martensite. Materials Science and Engineering: A. 2006;432:216-20.
[32] Krauss G. Steels: Processing, Structure, and Performance. Ohio: ASM International; 2005.