تاثیر ولتاژ بایاس بر ساختار، مورفولوژی و سختی پوشش نیترید زیرکونیوم ایجاد شده به روش کندوپاش مغناطیسی واکنشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران

2 استادیار، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران،

3 استادیار، دانشکده مهندسی مواد و متالورژی، دانشگاه علم و صنعت ایران

چکیده

در این پژوهش لایه های نیترید زیرکونیوم روی سیلیکون و فولاد زنگ نزن ۳۰۴ با روش کندوپاش مغناطیسی واکنشی پوشش داده شدند. تاثیر ولتاژ بایاس زیرلایه روی ساختار لایه ها، مورفولوژی و سختی مورد بررسی قرار گرفت. لایه ها بوسیله ی پراش اشعه ایکس، میکروسکوپ الکترونی روبشی، میکروسختی سنجی و میکروسکوپ نیروی اتمی آنالیز شدند. بر اساس الگوهای پراش اشعه ایکس، تنها پیک های پراش ZrN مربوط به صفحات (۱۱۱) و (۲۰۰) مشاهده شدند که با افزایش ولتاژ بایاس از ۰ تا ۱۵۰ ولت اندازه دانه ها از ۱۹ نانومتر به ۱۳ نانومتر کاهش یافتند. علاوه براین، مشاهدات میکروسکوپ الکترونی روبشی از سطح مقطع همه ی لایه های نیترید زیرکونیوم، ساختار ستونی را نشان دادند. همچنین تصاویر میکروسکوپ نیروی اتمی از سطح پوشش ها افزایش زبری سطح پوشش ها با افزایش ولتاژ بایاس را نمایش دادند. افزایش ولتاژ بایاس تاثیر مستقیم روی اندازه سختی پوشش ها داشت که برای نمونه با بایاس ۱۰۰ ولت به اندازه بیشینه حدود ۱۷۲۰ ویکرز رسید. در ضمن اعمال ولتاژ بایاس تا یک حد بحرانی باعث افزایش تراکم لایه همراه با حذف تخلخل ها و افزایش تنش فشاری می شود و در صورتیکه مقدار ولتاژ بایاس بیشتر از ۱۰۰ ولت اعمال شود، به دلیل افزایش احتمال پدیده کندوپاش مجدد، خواص مکانیکی پوشش افت می کند.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of bias voltage on the structure, morphology and hardness of ZrN coating deposited by reactive magnetron sputtering

نویسندگان [English]

  • Reza Madanypoor 1
  • Masood Hashemi Niasari 2
  • S. Morteza Masoudpanah 3
1 MSc. Student, School of Metallurgy and Materials Eng., Iran University of Science and Technology
2 Assistant Professor, School of Metallurgy and Materials Eng., Iran University of Science and Technology,
3 Assistant Professor, School of Metallurgy and Materials Eng., Iran University of Science and Technology,
چکیده [English]

ZrN thin films were deposited on silicon (111) and 304 stainless steel substrates using direct current (DC) reactive magnetron sputtering. Effects of the substrate bias voltage on the films’ structure, morphology and hardness were investigated. The films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and microhardness tester. XRD patterns showed grain size refinement from 19 to 13 nm with an increase of bias voltage from 0 V to 150 V. In addition, (111) and (200) diffraction peaks were only present and other orientation were omitted. FESEM cross section of ZrN thin films showed a well aligned columnar structure. Based on AFM images, the surface roughness was also increased at higher bial voltages. The increase of bias voltage also resulted in hardness increase. Maximum hardness of 1720 Vickers was obtained at 100 V bias. Negative bias voltage induces some residual stress in the films due to the increase in film's density by the elimination of porosity and voids.

کلیدواژه‌ها [English]

  • Zirconium Nitride
  • Reactive Sputtering
  • Bias Voltage
[1]
H. Prengel, W. fouts and A. Santhanam, "State of the art in hard coatings for carbide cutting tools," Surface and Coatings Technology, vol. 102, pp. 183-190, 1998.
[2]
W. Kalss, A. Reiter, V. Derflinger, C. Gey and J. Endrino, "Modern coatings in high performance cutting applications,," International Journal of Refractory Metals & Hard Materials, vol. 24, pp. 399-404, 2006.
[3]
C. Ducros, Benevent, V and F. Sanchette, "Deposition, characterization and machining performance of multilayer PVD coatings on cemented carbide cutting tools," Surface and Coatings Technology, Vols. 163-164, pp. 681-688, 2003.
[4]
W.D. Sproul, "New Routes in the Preparation of Mechanically Hard Films," Science, vol. 273, 1996.
[5]
S. Pal Dey and S. Deevi, "Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review," Materials Science and Engineering, vol. A 342, pp. 58-79, 2003.
[6]
R. Daniel, J. Musil, P. Zeman and C. Mitterer, "Thermal stability of magnetron sputtered Zr–Si–N films," Surface and Coatings Technology, vol. 201, pp. 3368-3376, 2006.
[7]
L. Hultman, "Thermal stability of nitride thin films," Vacuum, vol. 57, pp. 1-30, 2000.
[8]
D. Pilloud, A. Dehlinger, J. Pierson, A. Roman and L. Pichon, "Reactively sputtered zirconium nitride coatings: structural, mechanical, optical and electrical characteristics," Surface and Coatings Technology, Vols. 174-175, p. 338, 2003.
[9]
J. Ramana, S. Kumar, C. David, A. Ray and V. Raju, "Characterisation of zirconium nitride coatings prepared by DC magnetron sputtering," Materials Letters, vol. 43, p. 73, 2000.
[10]
D. Wu, Z. Zhang, W. Fu, X. Fan, Guo and H, "Structure, electrical and chemical properties of zirconium nitride films deposited by dc reactive magnetron sputtering," Applied Physics A, vol. 64, p. 593, 1997.
[11]
J. Huang, C. Ho and G. Yu, "Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si (100) and stainless steel substrates," Materials Chemistry and Physics, vol. 102, p. 31, 2007.
[12]
M. Augera, J. Araizab, C. Falconyc and J. Albella, "Hardness and tribology measurements on ZrN coatings deposited by reactive sputtering technique," Vacuum, vol. 81, pp. 1462-1465, 2007.
[13]
R. Franz, M. Lechthaler, C. Polzer and C. Mitterer, "Oxidation behaviour and tribological properties of arc-evaporated ZrAlN hard coatings," Surface & Coatings Technology, vol. 206, p. 2337–2345, 2012.
[14]
C. Wang, S. Akbar, W. Chen and V. Patton, "Electrical properties of high-temperature oxides borides, carbides, and nitrides," Materials Science, vol. 30, p. 1627, 1995.
[15]
R. Constantin and B. Miremad, "Performance of hard coatings, made by balanced and unbalanced magnetron sputtering, for decorative applications," Surface and Coatings Technology, Vols. 120-121, p. 728, 1999.
[16]
E. Budke, J. Krempel-Hesse, H. Maidhof and H. Schussler, "Decorative hard coatings with improved corrosion resistance," Surface and Coatings Technology, vol. 112, p. 108, 1999.
[17]
J. Dauchot, E. Edart, M. Wautelet and M. Hecq, "Synthesis of zirconium nitride films monitored by in situ soft X-ray spectrometry," Vacuum, vol. 46, p. 927, 1995.
[18]
C. Mitterer, P. Mayrhofer, W. Waldhauser, E. Kelesoglu and P. Losbichler, "The influence of the ion bombardment on the optical properties of TiNx and ZrNx coatings," Surface and Coatings Technology, Vols. 108-109, p. 230, 1998.
[19]
K. Gruss, T. Zheleva, R. Davis and T. Watkins, "Characterization of zirconium nitride coatings deposited by cathodic arc sputtering," Surface and Coatings Technology, vol. 107, p. 115, 1998.
[20]
H. Spillmann, P. Willmott, M. Morstein and P. Uggowitzer, "ZrxAlyN and ZrxGayN thin films –novel materials for hard coatings grown using pulsed laser deposition," Applied Physics. A, vol. 73, p. 441, 2001.
[21]
A. Thobor, C. Rousselot and C. Clement, "Enhancement of mechanical properties of TiN/AlN multilayers by modifying the number and the quality of interfaces," Surface and Coatings Technology, vol. 124, p. 210, 2000.
[22]
A. Lousa, E. Martinez, J. Esteve and E. Pascual, "Effect of ion bombardment on the properties of B4C thin films deposited by RF sputtering," Thin Solid Films, Vols. 355-356, p. 210, 1999.
[23]
T. Migita, R. Kamei, T. Tanaka and K. Kawabata, "Effect of dc bias on the compositional ratio of WN thin films prepared by rf-dc coupled magnetron sputtering," Applied Surface Science, Vols. 169-170, p. 362, 2001.
[24]
J. Pierson and E. Tomasella, "Reactively sputtered Ti–B–N nanocomposite films: correlation between structure and optical properties," Thin Solid Films, vol. 408, p. 26, 2002.
[25]
E. Ribeiro, A. Malczyk and S. Carvalho, "Effects of ion bombardment on properties of d.c. sputtered superhard (Ti, Si, Al)N nanocomposite coatings," Surface and Coatings Technology, Vols. 151-152, p. 515, 2002.
[26]
I. P. Ivanor, L. Hultman, I. Petra and J. Sundgren, "Electron energy distribution function in DC magnetron axially symmetric discharges: evidence of spatial anisotropy," Vacuum Science & Technology A, vol. 12, p. 314, 1994.
[27]
D. Jianxin, L. Jianhua, Z. Jinlong and S. Wenlong, "Wear mechanisms of PVD ZrN coated tools in machining," International Journal of Refractory Metals & Hard Materials, vol. 26, pp. 164-172, 2008.
[28]
B. Subramanian, V. Swaminathan and M. Jayachandran, "Microstructural, Tribological and Electrochemical Corrosion Studies on Reactive DC Magnetron Sputtered Zirconium Nitride Films with Zr Interlayer on Steel," Metals and Materials International, vol. 18, pp. 957-964, 2012.
[29]
B. Jonsonn and S. Hogmark, "Hardness measurements of thin films," Thin Solid Films, vol. 114, p. 257, 1984.
[30]
Q. Meng and M. Wen, "Preferred orientation, phase transition and hardness for sputtered zairconium nitride films grown at different substrate biases",Surface and Coatings Tecnology, Vol. 205, P. 2865-2870, 2011