مروری اجمالی بر تاثیر شیوه‌های مختلف انجام نورد انباشتی بر ریزساختار و ویژگی‌های مکانیکی آلیاژ‌های نانوساختار و نانوکامپوزیت‌های بر پایه آلومینیم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری نانومواد، گروه نانومواد، دانشکده فناوری نانو، پردیس علوم و فناوری‌های نوین، دانشگاه سمنان

2 دانشیار، گروه نانومواد، دانشکده نانوفناوری، پردیس علوم و فناوری‌های نوین، دانشگاه سمنان

چکیده

در سال های اخیر، روش های مبتنی بر تغییر شکل پلاستیک شدید، جهت بهبود ساختار و خواص مکانیکی فلزات مختلف بویژه آلومینیم مورد توجه قرار گرفته اند. از میان روش های مختلف، فرایند نورد انباشتی جهت اصلاح ساختار ورق ها بسیار مورد توجه است. با استفاده از این روش می توان آلیاژهای آلومینیم نانوساختار و نانوکامپوزیت های آلومینیم و ذرات تقویت کننده را ایجاد کرد و همزمان ویژگی های مکانیکی مانند استحکام کششی و سختی را به طرز محسوسی بهبود بخشید. در اغلب پژوهش های صورت گرفته، با انجام نورد انباشتی میانگین اندازه دانه ها به کمتر از 500 نانومتر و استحکام کششی تا بیش از 2 برابر استحکام نمونه آنیل شده اولیه افزایش یافته است. نورد انباشتی می تواند به روش های مختلفی بر ورق ها اعمال شود که تاثیر متفاوتی بر اصلاح ساختار و ویژگی های مکانیکی خواهد داشت. در این مقاله تاثیر روش های مختلف انجام فرایند نورد انباشتی بر ریزساختار و خواص مکانیکی آلیاژهای آلومینیم و کامپوزیت های بر پایه آلومینیم بررسی شده است.

کلیدواژه‌ها


عنوان مقاله [English]

A brief review on effect of accumulative roll bonding routes on microstructure and mechanical properties of nanostructure alloys and nanocomposites based on aluminum

نویسندگان [English]

  • Hamed Roghani Mamaghani 1
  • Ehsan Borhani 2
1 PhD student of Nanomaterials, Nanomaterials Group, Faculty of Nanotechnology, College of New Sciences and Technologies, Semnan University,
2 Associate Professor, Nanomaterials Group, Faculty of Nanotechnology, College of New Sciences and Technologies, Semnan University,
چکیده [English]

In recent years, methods based on sever plastic deformation have been considered to improve the structure and mechanical properties of various metals, especially aluminum. Among the different methods, accumulative roll boding process is appropriate to improve the structure of metals sheet. Using this method, nanostructured aluminum alloys and aluminum nanocomposites reinforced by particles can be manufactured and simultaneously improve mechanical properties such as tensile strength and hardness. In most researches, after applying of 6 to 8 cycle of accumulative roll boding process the average of grain size reduced to less than 500 nm and the tensile strength increased to more than 2 times of the strength of the annealed aluminum. Accumulative roll boding process can be applied to different sheets in different routes, which will have a different effect on structural modification and mechanical properties. In this paper, the effect of various methods of accumulative roll boding process on microstructure and mechanical properties of aluminum alloys and aluminum based composites has been investigated.

کلیدواژه‌ها [English]

  • Aluminum, Severe plastic deformation (SPD)
  • Accumulative roll bonding (ARB)
  • Nanostuctures
  • Nanocomposites
[1] M. Abdolahi Sereshki, B. Azad, E. Borhani."Corrosion Behavior of Al-2wt%Cu Alloy Processed By Accumulative Roll Bonding (ARB) Process", Journal of Ultrafine Grained and Nanostructured Materials, Vol. 49(1), pp. 22-8, 2016.
[2] P. Afzali, M. Yousefpour, E. Borhani."Evaluation of the effect of ageing heat treatment on corrosion resistance of Al–Ag alloy using electrochemical methods", Journal of Materials Research, Vol. 31(16), pp. 2457-64, 2016.
[3] E. Ahmadi, M. Ranjkesh, E. Mansoori, M. Fattahi, R. Y. Mojallal, S. Amirkhanlou."Microstructure and mechanical properties of Al/ZrC/TiC hybrid nanocomposite filler metals of tungsten inert gas welding fabricated by accumulative roll bonding", Journal of Manufacturing Processes, Vol. 26, pp. 173-7, 2017.
[4] M. Alizadeh, E. Salahinejad."A comparative study on metal–matrix composites fabricated by conventional and cross accumulative roll-bonding processes", Journal of Alloys and Compounds, Vol. 620(Supplement C), pp. 180-4, 2015.
[5] M. Alvand, M. Naseri, E. Borhani, H. Abdollah-Pour."Nano/ultrafine grained AA2024 alloy processed by accumulative roll bonding: A study of microstructure, deformation texture and mechanical properties", Journal of Alloys and Compounds, Vol. 712, pp. 517-25, 2017.
[6] H. Alvandi, K. Farmanesh."Microstructural and Mechanical Properties of Nano/Ultra-fine Structured 7075 Aluminum Alloy by Accumulative Roll-Bonding Process", Procedia Materials Science, Vol. 11, pp. 17-23, 2015.
[7] S. V. A. Ana, M. Reihanian, B. Lotfi."Accumulative roll bonding (ARB) of the composite coated strips to fabricate multi-component Al-based metal matrix composites", Materials Science and Engineering: A, Vol. 647, pp. 303-12, 2015.
[8] M. R. K. Ardakani, S. Amirkhanlou, S. Khorsand."Cross accumulative roll bonding—A novel mechanical technique for significant improvement of stir-cast Al/Al2O3 nanocomposite properties", Materials Science and Engineering: A, Vol. 591(Supplement C), pp. 144-9, 2014.
[9] S. M. Ashrafizadeh, A. R. Eivani, H. R. Jafarian, J. Zhou."Improvement of mechanical properties of AA6063 aluminum alloy after equal channel angular pressing by applying a two-stage solution treatment", Materials Science and Engineering: A, Vol. 687, pp. 54-62, 2017.
[10] B. Azad, E. Borhani."The Effect of Al2Cu Precipitate Size on Microstructure and Mechanical Properties of Al-2 wt.%Cu Alloys Fabricated by ARB", Journal of Materials Engineering and Performance, Vol. 24(12), pp. 4789-96, 2015.
[11] B. Azad, E. Borhani."Pre-aging time dependence of microstructure and mechanical properties in nanostructured Al-2wt%Cu alloy", Metals and Materials International, Vol. 22(2), pp. 243-51, 2016.
[12] B. Azad, E. Borhani."A study on the effect of nano-precipitates on fracture behavior of nano-structured Al-2wt%Cu alloy fabricated by accumulative roll bonding (ARB) process", Journal of Mining and Metallurgy, Section B: Metallurgy, Vol. 52, pp. 93-8, 2016.
[13] B. Azad, E. Borhani, H. M. Semnani."Fracture behavior of Al-0.2wt%Zr alloy processed by accumulative roll-bonding (ARB) process", Kovove materialy, Vol. 54(1), pp. 9–15, 2016.
[14] B. Azad, H. M. Semnani, E. Borhani."The combined effect of aging and accumulative roll bonding on the evolution of the microstructure and mechanical characteristics of an Al–0.2 wt % Zr alloy", Physics of Metals and Metallography, Vol. 118(1), pp. 87-95, 2017.
[15] B. Azad, H. M. Semnani, E. Borhani."Microstructure Evolution and Mechanical Properties of Nano-structured Al–0.2 wt%Zr Alloy Fabricated by Accumulative Roll Bonding (ARB) Process", Transactions of the Indian Institute of Metals, Vol., pp., 2017.
[16] A. Azushima, R. Kopp, A. Korhonen, D. Y. Yang, F. Micari, G. D. Lahoti, et al."Severe plastic deformation (SPD) processes for metals", CIRP Annals - Manufacturing Technology, Vol. 57(2), pp. 716-35, 2008.
[17] S. Baazamat, M. Tajally, E. Borhani."Fabrication and characteristic of Al-based hybrid nanocomposite reinforced with WO3 and SiC by accumulative roll bonding process", Journal of Alloys and Compounds, Vol. 653, pp. 39-46, 2015.
[18] E. borhani. Microstructure and Mechanical Property of Heavily Deformed Al-Sc Alloy Having Different Starting Microstructures. Kyoto University, Japan: Kyoto University; 2011.
[19] E. Borhani, B. Azad, A. Abdoos. Chapter 9 Nano Structures by Severe Plastic Deformation (Spd) Processes.  Applied Mathematical Models and Experimental Approaches in Chemical Science. Innovations in Chemical Physics and Mesoscopy: Apple Academic Press; 2016. p. 101-22.
[20] E. Borhani, H. Jafarian."Effect of Pre-existing Nano Sized Precipitates on Microstructure and Mechanical Property of Al-0.2wt% Sc Highly Deformed by ARB Process", Journal of Ultrafine Grained and Nanostructured Materials, Vol. 47(1), pp. 1-7, 2014.
[21] E. Borhani, H. Jafarian, H. Adachi, D. Terada, N. Tsuji."Annealing Behavior of Solution Treated and Aged Al-0.2wt% Sc Deformed by ARB", Materials Science Forum, Vol. 667-669, pp. 211-6, 2010.
[22] E. Borhani, H. Jafarian, A. Shibata, N. Tsuji."Texture Evolution in Al–0.2 mass%Sc Alloy during ARB Process and Subsequent Annealing", MATERIALS TRANSACTIONS, Vol. 53(11), pp. 1863-9, 2012.
[23] Y. Buranova, V. Kulitskiy, M. Peterlechner, A. Mogucheva, R. Kaibyshev, S. V. Divinski, et al."Al3(Sc,Zr)-based precipitates in Al–Mg alloy: Effect of severe deformation", Acta Materialia, Vol. 124, pp. 210-24, 2017.
[24] Y.-L. Chang, F.-Y. Hung, T.-S. Lui."Enhancing the tensile yield strength of A6082 aluminum alloy with rapid heat solutionizing", Materials Science and Engineering: A, Vol. 702(Supplement C), pp. 438-45, 2017.
[25] J. Chen, X. Zhang, L. Zou, Y. Yu, Q. Li."Effect of precipitate state on the stress corrosion behavior of 7050 aluminum alloy", Materials Characterization, Vol. 114, pp. 1-8, 2016.
[26] F. Daneshvar, M. Reihanian, K. Gheisari."Al-based magnetic composites produced by accumulative roll bonding (ARB)", Materials Science and Engineering: B, Vol. 206, pp. 45-54, 2016.
[27] M. Ebrahimi, A. Zarei-Hanzaki, H. R. Abedi, M. Azimi, S. S. Mirjavadi."Correlating the microstructure to mechanical properties and wear behavior of an accumulative back extruded Al-Mg2Si in-situ composite", Tribology International, Vol. 115, pp. 199-211, 2017.
[28] K. Edalati, Z. Horita."A review on high-pressure torsion (HPT) from 1935 to 1988", Materials Science and Engineering: A, Vol. 652, pp. 325-52, 2016.
[29] Ehsan Borhani, Hamidreza Jafarian, Daisuke Terada, Hiroki Adachi, Nobuhiro Tsuji."Microstructural Evolution during ARB Process of Al-0.2 mass% Sc Alloy Containing Al3Sc Precipitates in Starting Structures", Materials Transactions, Vol. 53(1), pp. 72-80, 2012.
[30] H. J. Ehsan Borhani, Takatoshi Sato, Daisuke Terada, Yoji Miyajima, Nobuhiro Tsuji, editor Effect of Pre-aging on Microstructure and Mechanical Property of Al-0.2wt% Sc Deformed by ARB. Proceedings of the 12th International Conference on Aluminium Alloys; 2010; Yokohama, Japan: The Japan Institute of Light Metals.
[31] Y. Estrin, A. Vinogradov."Extreme grain refinement by severe plastic deformation: A wealth of challenging science", Acta Materialia, Vol. 61(3), pp. 782-817, 2013.
[32] Y. Fan, M. Makhlouf."Stabilizing the strengthening precipitates in aluminum-manganese alloys by the addition of tungsten", Materials Science and Engineering: A, Vol. 691, pp. 1-7, 2017.
[33] A. Fattah-alhosseini, O. Imantalab, Y. Mazaheri, M. K. Keshavarz."Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process", Materials Science and Engineering: A, Vol. 650, pp. 8-14, 2016.
[34] A. Fattah-alhosseini, M. K. Keshavarz, Y. Mazaheri, A. Reza Ansari, M. Karimi."Strengthening mechanisms of nano-grained commercial pure titanium processed by accumulative roll bonding", Materials Science and Engineering: A, Vol. 693, pp. 164-9, 2017.
[35] Y.-b. FENG, Q.-c. YU, B. YANG, Y.-n. DAI."Extraction of aluminum from alumina by disproportionation process of AlCl in vacuum", Trans Nonferrous Met Soc China, Vol. 23, pp. 2781−5, 2013.
[36] S. O. Gashti, A. Fattah-alhosseini, Y. Mazaheri, M. K. Keshavarz."Effects of grain size and dislocation density on strain hardening behavior of ultrafine grained AA1050 processed by accumulative roll bonding", Journal of Alloys and Compounds, Vol. 658, pp. 854-61, 2016.
[37] S. Ghaemi Khiavi, E. Emadoddin."Microhardness distribution and finite element method analysis of Al 5452 alloy processed by unconstrained high pressure torsion", Journal of Materials Research and Technology, Vol., pp., 2017.
[38] A. K. Gupta, T. S. Maddukuri, S. K. Singh."Constrained groove pressing for sheet metal processing", Progress in Materials Science, Vol. 84, pp. 403-62, 2016.
[39] H. R. Jafarian, E. Borhani."EFFECT OF AUSTENITE GRAIN MORPHOLOGY ON VARIANT SELECTION OF MARTENSITE TRANSFORMED FROM ULTRAFINE-GRAINED AUSTENITE", Iranian Journal of Materials Science & Engineering, Vol. 10(2), pp. 19-28, 2013.
[40] J. Huang, Y. T. Zhu, D. J. Alexander, X. Liao, T. C. Lowe, R. J. Asaro."Development of repetitive corrugation and straightening", Materials Science and Engineering: A, Vol. 371(1), pp. 35-9, 2004.
[41] H. Jafarian, E. Borhani, A. Shibata, N. Tsuji."Variant selection of martensite transformation from ultrafine-grained austenite in Fe–Ni–C alloy", Journal of Alloys and Compounds, Vol. 577(Supplement 1), pp. S668-S72, 2013.
[42] H. R. Jafarian, E. Borhani, A. Shibata, D. Terada, N. Tsuji."Martensite/austenite interfaces in ultrafine grained Fe–Ni–C alloy", Journal of Materials Science, Vol. 46(12), pp. 4216-20, 2011.
[43] C. Ji, Y. He, C. T. Wang, Y. He, X. Pan, J. Jiao, et al."Investigation on shock-induced reaction characteristics of an Al/Ni composite processed via accumulative roll-bonding", Materials & Design, Vol. 116, pp. 591-8, 2017.
[44] M. R. Kamali Ardakani, S. Khorsand, S. Amirkhanlou, M. Javad Nayyeri."Application of compocasting and cross accumulative roll bonding processes for manufacturing high-strength, highly uniform and ultra-fine structured Al/SiCp nanocomposite", Materials Science and Engineering: A, Vol. 592(Supplement C), pp. 121-7, 2014.
[45] M. Karimi, M. R. Toroghinejad, J. Dutkiewicz."Nanostructure formation during accumulative roll bonding of commercial purity titanium", Materials Characterization, Vol. 122, pp. 98-103, 2016.
[46] F. Kümmel, T. Hausöl, H. W. Höppel, M. Göken."Enhanced fatigue lives in AA1050A/AA5005 laminated metal composites produced by accumulative roll bonding", Acta Materialia, Vol. 120, pp. 150-8, 2016.
[47] J. Lai, Z. Zhang, X. G. Chen."Precipitation strengthening of Al–B4C metal matrix composites alloyed with Sc and Zr", Journal of Alloys and Compounds, Vol. 552, pp. 227-35, 2013.
[48] J. W. Lee, J. J. Park."Numerical and experimental investigations of constrained groove pressing and rolling for grain refinement", Journal of Materials Processing Technology, Vol. 130, pp. 208-13, 2002.
[49] H. Li, F. Cao, S. Guo, Z. Ning, Z. Liu, Y. Jia, et al."Microstructures and properties evolution of spray-deposited Al-Zn-Mg-Cu-Zr alloys with scandium addition", Journal of Alloys and Compounds, Vol. 691, pp. 482-8, 2017.
[50] B. Ma, K. Shi, H. Shang, R. Li, G. Li."The solid solution strengthening in Al-Zr nanocrystalline alloy films", Surface and Coatings Technology, Vol. 321(Supplement C), pp. 52-6, 2017.
[51] M. M. Mahdavian, H. Khatami-Hamedani, H. R. Abedi."Macrostructure evolution and mechanical properties of accumulative roll bonded Al/Cu/Sn multilayer composite", Journal of Alloys and Compounds, Vol. 703, pp. 605-13, 2017.
[52] I. F. Mohamed, T. Masuda, S. Lee, K. Edalati, Z. Horita, S. Hirosawa, et al."Strengthening of A2024 alloy by high-pressure torsion and subsequent aging", Materials Science and Engineering: A, Vol. 704, pp. 112-8, 2017.
[53] M. Naseri, A. Hassani, M. Tajally."An alternative method for manufacturing Al/B4C/SiC hybrid composite strips by cross accumulative roll bonding (CARB) process", Ceramics International, Vol. 41(10), pp. 13461-9, 2015.
[54] M. Naseri, M. Reihanian, E. Borhani."Effect of strain path on microstructure, deformation texture and mechanical properties of nano/ultrafine grained AA1050 processed by accumulative roll bonding (ARB)", Materials Science and Engineering: A, Vol. 673, pp. 288-98, 2016.
[55] M. Naseri, M. Reihanian, E. Borhani."A new strategy to simultaneous increase in the strength and ductility of AA2024 alloy via accumulative roll bonding (ARB)", Materials Science and Engineering: A, Vol. 656, pp. 12-20, 2016.
[56]              O. G. Parfenov, A. D. Kustov, L. A. Solovyov."A new non-electrolytic aluminum extraction method", Trans Nonferrous Met Soc China, Vol. 26, pp. 2509−17, 2016.
[57]              B. Ravisankar. Equal-Channel Angular Pressing (ECAP).  Handbook of Mechanical Nanostructuring: Wiley-VCH Verlag GmbH & Co. KGaA; 2015. p. 277-97.
[58] A. P. Reddy, P. V. Krishna, R. N. Rao, N. V. Murthy."Silicon Carbide Reinforced Aluminium Metal Matrix Nano Composites-A Review", Materials Today: Proceedings, Vol. 4(2), pp. 3959-71, 2017.
[59] M. Rezayat, A. Akbarzadeh, A. Owhadi."Fabrication of High-Strength Al/SiC p Nanocomposite Sheets by Accumulative Roll Bonding", Metallurgical and Materials Transactions A, Vol. 43(6), pp. 2085-93, 2012.
[60] M. Rezayat, A. Akbarzadeh, A. Owhadi."Production of high strength Al–Al2O3 composite by accumulative roll bonding", Composites Part A: Applied Science and Manufacturing, Vol. 43(2), pp. 261-7, 2012.
[61] M. Ruppert, H. W. Höppel, M. Göken."Influence of cross-rolling on the mechanical properties of an accumulative roll bonded aluminum alloy AA6014", Materials Science and Engineering: A, Vol. 597, pp. 122-7, 2014.
[62] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R. G. Hong."Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process", Scripta Materialia, Vol. 39(9), pp. 1221-7, 1998.
[63] A. Salimi, E. Borhani, E. Emadoddin."Evaluation of Mechanical Properties and Structure of 1100-Al Reinforced with Zro2 Nano-particles via Accumulatively Roll-bonded", Procedia Materials Science, Vol. 11, pp. 67-73, 2015.
[64] H. Shang, B. Ma, K. Shi, R. Li, G. Li."The strengthening effect of boron interstitial supersaturated solid solution on aluminum films", Materials Letters, Vol. 192(Supplement C), pp. 104-6, 2017.
[65] H. Solouki, E. Borhani, M. Toroghinezhad."The effect of temperature and strain rate on elongation to failure in nanostructured Al-0.2wt% Zr alloy fabricated by ARB process", Journal of Ultrafine Grained and Nanostructured Materials, Vol. 48(2), pp. 125-32, 2015.
[66] J. Spirdione, H. Ghonem."Dynamic flow stress of fine grain material processed using equal channel angular pressing", Materials Science and Engineering: A, Vol. 698, pp. 256-67, 2017.
[67] L. Su, C. Lu, H. Li, G. Deng, K. Tieu."Investigation of ultrafine grained AA1050 fabricated by accumulative roll bonding", Materials Science and Engineering: A, Vol. 614, pp. 148-55, 2014.
[68] N. Thangapandian, S. Balasivanandha Prabu, K. A. Padmanabhan."Effects of die profile on grain refinement in Al–Mg alloy processed by repetitive corrugation and straightening", Materials Science and Engineering: A, Vol. 649, pp. 229-38, 2016.
[69] L. S. Toth, C. Gu."Ultrafine-grain metals by severe plastic deformation", Materials Characterization, Vol. 92, pp. 1-14, 2014.
[70] R. Valiev."Nanostructuring of metals by severe plastic deformation for advanced properties", Nat Mater, Vol. 3(8), pp. 511-6, 2004.
[71] R. Z. Valiev, T. G. Langdon."Principles of equal-channel angular pressing as a processing tool for grain refinement", Progress in Materials Science, Vol. 51(7), pp. 881-981, 2006.
[72] J. Vaziri, A. Jahan, E. Borhani, M. Yousefieh, K. L. Edwards."Evaluating promising applications of a new nanomaterial produced by accumulative roll bonding process: A preliminary multiple criteria decision-making approach", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 0(0), pp. 1464420716674037,
[73] K. Verstraete, A. L. Helbert, F. Brisset, A. Benoit, P. Paillard, T. Baudin."Microstructure, mechanical properties and texture of an AA6061/AA5754 composite fabricated by cross accumulative roll bonding", Materials Science and Engineering: A, Vol. 640(Supplement C), pp. 235-42, 2015.
[74] Z.-S. Wang, Y.-J. Guan, G.-C. Wang, C.-K. Zhong."Influences of die structure on constrained groove pressing of commercially pure Ni sheets", Journal of Materials Processing Technology, Vol. 215, pp. 205-18, 2015.
[75] Yashpal, Sumankant, C. S. Jawalkar, A. S. Verma, N. M. Suri."Fabrication of Aluminium Metal Matrix Composites with Particulate Reinforcement: A Review", Materials Today: Proceedings, Vol. 4, pp. 2927–36, 2017.
[76] M. Yousefieh, M. Tamizifar, S. M. A. Boutorabi, E. Borhani."An investigation on the microstructure, texture and mechanical properties of an optimized friction stir-welded ultrafine-grained Al–0.2 wt% Sc alloy deformed by accumulative roll bonding", Journal of Materials Science, Vol. 53(6), pp. 4623-34, 2018.
[77] M. Yousefieh, M. Tamizifar, S. M. A. Boutorabi, E. Borhani."Taguchi Optimization on the Initial Thickness and Pre-aging of Nano-/Ultrafine-Grained Al-0.2 wt.%Sc Alloy Produced by ARB", Journal of Materials Engineering and Performance, Vol. 25(10), pp. 4239-48, 2016.