توسعه نانوکامپوزیت ریختگی درجای زمینه منیزیمی تقویت‌شده با نانوذرات اکسیدی با افزودن پودرفعال شده نانو سیلیکا به مذاب

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش مهندسی مواد، پردیس دانشگاه صنعتی اصفهان،

2 دانشکده‌ مهندسی مواد، دانشگاه صنعتی اصفهان

3 استادیار پژوهشکده فولاد، دانشگاه صنعتی اصفهان

چکیده

در این پژوهش، نانوکامپوزیت‌های زمینه منیزیمی از جنس آلیاژ AZ91C تقویت‌شده با ذرات اکسیدی، به‌ صورت درجا با افزودن 2 درصد وزنی نانوسیلیکا به شکل مخلوط پودری 50wt.%Al+50wt.%SiO2(np) فعال‌سازی شده، به‌‌روش ریخته‌گری گردابی تهیه شد. ابتدا مخلوط پودری در شمش آلیاژ منیزیم جاگذاری شده و دمای آن تا °C800 افزایش یافت. سپس دمای مذاب به °C750 کاهش یافته و در این دما به‌ مدت 15 دقیقه هم‌زده شد. در نهایت، مخلوط مذاب و جامد کامپوزیتی در دمای °C720 در قالب فلزی پیش‌گرم شده ریخته‌گری شد. برای مقایسۀ‌ نتایج، نمونه‌های شاهدی نیز تحت شرایط کاملا یکسان ریختگی شدند. بررسی‌‌های ریزساختاری و مکانیکی، بهبود ریزساختار، کاهش تخلخل و افزایش سختی، استحکام کششی و استحکام تسلیم در نمونه‌های کامپوزیتی را نشان داد. مقدار سختی، استحکام تسلیم و استحکام کششی به‌‌ترتیب از 67 برینل، 84 مگاپاسکال و 168 مگاپاسکال در نمونه‌های بدون تقویت‌کننده به 80 برینل، 120 مگاپاسکال و 230 مگاپاسگال در نمونه‌های کامپوزیتی افزایش یافت. بر اساس بررسی‌های ریزساختاری و طیف‌سنجی پراش انرژی پرتو ایکس، به‌نظر می-رسد واکنش درجای آلومینیوم، منیزیم و سیلیکا باعث ایجاد ذرات تقویت‌کننده اکسیدی از جنس Al2O3 ، MgAl2O4 و MgO در زمینه شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Development of in-situ cast magnesium matrix nano-composite reinforced with oxide nano particles by addition of activated nano-silica powder to the melt

نویسندگان [English]

  • Mansour Borouni 1
  • Behzad Niroumand 2
  • Ali Maleki 3
1 College of Pardis, Materials Engineering Section, Isfahan University of Technology
2 Professor, Department of Materials Engineering, Isfahan University of Technology
3 Assistant Professor, Research Institute for Steel, Isfahan University of Technology
چکیده [English]

In this study, AZ91C magnesium matrix in-situ nano-composites reinforced with oxide particles were produced by addition of 2 wt% nano silica in the form of a 50wt.%Al+50wt.%SiO2(np) activated powder mixture to the melt using stir casting method. For this purpose, the activated powder mixture was embedded in AZ91C ingots and their temperature was stabilized at 800°C. Then the melt temperature was reduced to 750°C and the composite slurry was stirred for 15 min. Finally the slurry was cast in a preheated die at 720°C. Control samples were also cast under the same conditions. Improved microstructure, reduced porosity and increased hardness, tensile strength and yield strength of the composite sample were revealed by microstructural and mechanical investigations. The hardness, yield strength and tensile strength values increased from 67 BHN, 84 MPa and 168 MPa for the monolithic samples to 80 MPa, 120 MPa and 230 MPa for the in-situ formed cast composites, respectively. Microstructural and EDS analyses suggested the in-situ formation of Al2O3, MgAl2O4 and MgO oxide particles by in-situ reaction of Al, Mg and SiO2 in the melt.

کلیدواژه‌ها [English]

  • AZ91C alloy
  • in-situ cast nano-composite
  • Silica Nanoparticles
  • Mechanical properties
  • stirs casting
[1]E.F. Horst,L.M. Barry,Magnesium Technology (Metallurgy,Design Data,Applications), Springer, Germany, 2006.
[2] D. Eliezer, E. Aghion, F.H. (Sam) Froes, Magnesium Science, Technology and Applications, Advanced Performance Materials 5, pp. 201–212, 1998.
[3] H. Jafari, M. H. Idris, A. Ourdjini, "High temperature oxidation of AZ91D magnesium alloy granule during in-situ melting", Corrosion Science,Vol. 53, pp. 655–663, 2011.
[4]S. Aravindan, P.V. Rao, K. Ponappa,"Evaluation of physical and mechanical properties of AZ91D/SiC composites by two step stir casting process", Journal of Magnesium and Alloys,Vol. 3, pp. 52-62, 2015.
[5] G. Q. You, S. Long, R. Li., "Effective protection of magnesium melt surface from oxidation using HFC125-containing shielding gas", Materials Science Forum, Vols. 546-549, pp. 119-122, 2007.
[6] H.E. Friedrich, B.L., Mordike, "Magnesium Technology (Metallurgy, Design Data, Applications)", 1st Ed., Springer, Germany, 2006.
[7] ASM Handbook, "Properties and Selection: Nonferrous Alloys and Special-Purpose Materials", Vol. 2, 10thed., ASM, 1992.
[8] ر. رحمانی گرجی، ح. جعفری، ع. علیزاده، "بررسیخواصفیزیکیکامپوزیتزمینهمنیزیمیZX51-Al2O3ساختهشدهبهروشریختهگریگردابیواکستروژنگرم"، مجلۀ مهندسی متالورژی، 58، ص13 تا25، تابستان 1394.
[9] S. F. Hassan, M.Gupta, Effect of submicron size Al2O3 particulates on microstructural and tensile    properties of elemental Mg. Journal of Alloys andCompounds, Vol. 457, 244–250, 2008.
[10] R.Casati, M. Vedani, "Metal matrix composites reinforced by nano-particles-a review", Metals, Vol. 4, pp. 65-83, 2014.
[11] L. Y. Chen, J.Q. Xu, H. Choi, M. Pozuelo, X. Ma, S. Bhowmick, J. M. Yang, S. Mathaudhu, X.C. Li, "Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles", Nature, vol. 528, pp.539–543, 2015.
[12] H. Choi, Y. Sun, B. P. Slater, H. Konishi, , X. Li, AZ91D-TiB2 Nanocomposites fabricated by solidification nanoprocessing, Advanced Engineering Materiales, Vol.14, N0. 5, pp. 291-295, 2012.
[13]M. Habibnejad-Korayem, R. Mahmudi, W.J. Poole, "Enhanced properties of Mg-based nanocomposites reinforced with Al2O3 nano particles", Materials Science and Engineering A, Vol. 519, pp. 198-203, 2009.
[14] K.Kainer,Metal matrix composite, Wiley book, 2006.
[15] M. N. Gang, Growth of nanorods or nanostructured eutectic in the formation of Mg-based metal matrix composite, PhD thesis, The Chinese University of Hong Kong, 2004.
[16] J.N. Fridlyander, Metal matrix composite, chapman&Hall, Moscow, Russia, 1995.
[17] A. Kazunori, Y.Hiroyuki, "High temperature properties of AZ91D magnesium alloy composite reinforced with short alumina fiber and Mg2Si particle", Materials Transactions, Vol. 49, No. 7, pp. 1688-1693, 2008.
[18] Z. Xiuging, Li. Lihua, M. Naiheng,W. Haowei, "New In-situ synthesis method of magnesium matrix composites reinforced with TiC particles", Materials Research, Vol. 9, No. 4, pp. 357-360, 2006.
[19] Z. Song-li, Z. Yu-tao,C. Gang, "In situ (Mg2Si+MgO)/Mg composites fabricated from AZ91-Al2(SiO3)3 with assistance of high-energy ultrasonic field", Transactions of Nonferrous metals Society of china, Vol. 20, pp. 2096-2099, 2010.
[20] P.P. Bhingole, G. P. Chaudhari, S. K. Nath, "Processing, microstructure and properties of ultrasonically processed in situ MgO–Al2O3–MgAl2O4 dispersed magnesium alloy composites", Composites: Part A, 66, pp.  209–217, 2014.
[21] International ASTM B 80-05, "Standard specification for magnesium –alloy sand casting", 2005.
[22] M. Senemar, A. Maleki, B. Niroumand,A. Allafchian,  "A novel and facile method for silica nanoparticles synthesis from high temperature vulcanization (HTV) silicone",Association of Metallurgical Engineers of Serbia (AMES),Vol 22,Issue 1, pp. 1-8, 2016.
[23] M. Borouni, B. Niroumand, A. Maleki, "Synthesis and characterization of in-situ magnesium based cast nano composite via nano-SiO2 addition to the melt", Materials and technology, Vol.51, No.6, 2017.
[24] International ASTM B E8/E8M – 09, "Standard Test Methods for Tension Testing of Metallic Materials1", 2010.

[25] International ASTM E03-1, "Standard Practice for Preparation of Metallographic Specimens",2007.

[26] D. Huang, Y. Wang, Y. Wang, H. Cui, X. Guo, "In situ Mg2Si reinforced Mg alloy synthesized in Mg-SiO2 system", Advanced Materials Research,Vols. 146-147, pp.1775-1779, 2011.
[27] Y.J. Liang, Y.C. Chen,Thermodynamic Data Handbook on Inorganic Substances,Dongbei University Press, China, in Chinese, 1993.
[28] V.M. Sreekumar, R.M. Pillai, B.C. Pai, M. Chakraborty:"Evolution ofMgAl2O4 crystals in Al-Mg-SiO2 composites", Applied Physics AMaterials Science & Processing, Vol. A 90, pp. 745–752, 2008.
[29] C. Pacurariu, I. Lazau, Z. Ecsedi, R. Lazau, P. Barvinschi, G. Marginean, "New synthesis methods of MgAl2O4 spinel", Journal of the European Ceramic Society, vol. 27, pp. 707–710, 2007.

[30] G. Ramani, R.M. Pillai, B.C. Pai, T.R. Ramamohan, "Factors affecting the stability of non-wetting dispersed suspensions in metallic melts", Composites, Vol. 22, Issue 2, pp 143-150, 1991.

[31]A. Kazunori, Y. Hiroyuki, "Effects of particle-dispersion on the strength of an alumina fiber-reinforced aluminum alloy matrix composite", Materials Transactions, Vol. 44, No. 6, pp. 1172 to 1180, 2003. 
[32] T.S. Srivatsan, C. Godbole, T. Quick, M. Paramsothy, M. Gupta, "Mechanical behavior of a magnesium alloy nanocomposite under conditions of static tension and dynamic fatigue",Journal of Materials Engineering and Performance, vol. 22, pp. 439–453, 2013.
[33] P. Andersson, C. H. Cáceres, J. Koike, "Hall-Petch parameters for tension and compression in cast Mg", Materials Science Forum, Vols. 419-422, pp. 123-128, 2003.
[34] A. Sanaty-Zadeh,P.K. Rohatgi, "Comparison between current models for the strength of particulate reinforced metal matrix nanocomposites with emphasis on consideration of Hall–Petch effect", Materials Science and Engineering, A 531, pp. 112-118, 2012.
[35] Z. Zhang, , D.L. Chen, "Consideration of orowan strengthening effect in particulate-reinforced metal matrix nano composites: "A model for Predicting their Yield Strength", ScriptaMateriala, Vol. 54, Issue 7, pp. 1321-1326, 2006.
[36] G.E. Dieter,Mechanical Metallurgy, MacGraw-Hill Book Company Limited, UK, 1988.