جوشکاری به روش A-TIG بر روی فولاد ابزار D2 با فلاکس های اکسیدی SiO2 و ZnO

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مهندس

2 عضو هیات علمی

چکیده

در این پژوهش، جوشکاری فولاد ابزار سردکار آلیاژی D2 مورد بررسی قرار گرفته است. سعی گردیده است به کمک روش A-TIG راه حل مناسبی برای افزایش عمق نفوذ و نسبت عمق به عرض جوش در مقایسه با روش TIG جست و جو شود . متغیرهای این پژوهش نوع فلاکس فعال اکسیدی و شدت جریان در نظر گرفته شده اند که تاثیر هر یک بر عمق نفوذ و عرض جوش و ظاهر آن مورد بررسی قرار گرفته است. فلاکس های مورد استفاده در این پژوهش ZnO و SiO2 بودند و جوشکاری در پنج شدت جریان 85 ، 100 ، 115 ، 130 و 145 آمپر انجام شد.
نتایج حاصل نشان دادند که در فلاکس ZnO انحراف قوس و پاشش به دلیل مقاومت الکتریکی فلاکس ظاهر نامناسبی را در جوش بوجود آورده است. جوش های حاصل از فلاکس SiO2 دارای ظاهری مطلوب بوده و افزایش عمق نفوذ و کاهش عرض جوش را در بر داشته است. فلاکس SiO2 در این پژوهش بهترین عملکرد را با افزایش عمق نفوذ تا 4/5 میلی متر در شدت جریان 145 آمپر از خود به جای گذاشته است.

کلیدواژه‌ها


عنوان مقاله [English]

Study on A-TIG Welding of D2 Tool Steel Alloy with SiO2 and ZnO Fluxes

نویسندگان [English]

  • Soleiman Mohammad Bidhandi 1
  • Ayyub Halvaee 2
1 Engineer
2 Member of Academic Staff
چکیده [English]

In this research, Welding of D2 Cold Work Tool Alloy steel have been evaluated. A-TIG technique has been utilized to fine an appropriate solution in order to increase the depth of penetration and welding width compared to TIG. Active oxide flux and current intensity have considered as a main variables and their effects on penetration depth, welds width and welding surface appearance were investigated. The fluxes used in this study were ZrO2 and SiO2 and welding process was carried out at 85, 100, 115, 130 and 145A current intensities.
The results showed that arc deviation and spattering due to electrical resistance of ZrO2 flux creates improper appearance on weld surface. Welding by SiO2 flux make welds with good surface appearance and increase the depth of penetration and also decrease weld width. SiO2 flux shows the best performance by increasing of penetration depth up to 5.4 mm at 145A current intensity.

کلیدواژه‌ها [English]

  • Keywords: Steel D2
  • Oxide Active Flux
  • A-TIG
  • Welding Depth Penetration
 [1]R. W. Meseler, “Joining of Materials and Structure,”. Vol.3, 2004, pp.310–313.
[2]R.S.parmar, Welding processes and technology, in: Weld. Process. Technol., 1992, : pp. 224–226.
[3] S.Jobez, J.M.Pelleetier , and A.B.V. “Surface engineering of aluminum base alloys with high power laser beam,” Key Engineering Material. Vol.46-47, 1990, pp.317–329.
[4]  بررسی مقایسه ای روش مرسوم در جوشکاری فولاد زنگ نزن ،TIGو  A-TIG احسان احمدی ، علیرضا ابراهیمی ، یازدهمین کنفرانس مهندسی ساخت و تولید ایران ، 29 مهر ماه سال 1389 ، صفحات 1و2.
[5] P.W Muncaster , A Practical Guide to TIG (GTA) Welding ,A volume in Woodhead Publishing Series in Welding and Other Joining Technologies , 1991 , Ch 15 , pp124–125.
[6] C. Dong , S. Katayama , Basic Understanding of A-TIG Welding Process , Joining and Welding Research Institute , Osaka Univercity , Japan , 2004.
[7]D. Howse,Exploiting Advances in Arc Welding Technology ,Developments in A-TIG Welding ,A volume in Woodhead Publishing Series in Welding and Other Joining Technologies , 1999 , pp 3–9.
[8]LO.Vilarinho, V.Kumar, B.Lucas, S.Raghunathan, Successful High-Productivity Welding With A-TIG Process, 20th International Congress of Mechanical Engineering, Brazil, 2009. 
[9]D.Howse, Developments in A-TIG welding, Exploiting Advances in Arc Welding Technology,1998, Woodhead, England, pp 3–9.
[10]Y.Morisada, H. Fujii, N. Xukun , Development of simplified active flux tungsten inert gas welding for deep penetration , Joining and Welding Research Institute , Osaka Univercity, Japan , 2014.
[11]D S Howse , W Lucas , Activating flux – Increasing the performance and productivity of the TIG and plasma processes . Welding and Metal Fabrication , 1996 , pp 11-17.
[12]C. W. Wegst, Key To Steel.StahlschluesselWegst GMBH, 2013.
[13]K.A. Esaklul , Handbook of Case Histories in Failure Analysis , V1 , 1992, pp 413-416.
[14]S.R. Lampman, ASM Handbook, V1 , 1990 , pp 758,772.
[15]P. J. Modenesi, E. R. Apolinario and I. M. Pereira, “TIG Welding with Single-Component Fluxes”, Journal of Materials Processing Technology, Vol. 99, 2000, pp 260-265.
[16]H Huang, S Shengwen, K Tseng, and G Changpin, "Effects of the Process Parameters on Austenitic Stainless Steel by TIG-Flux Welding", Journal of Materials Processing Technology, 2006, Vol.22, pp. 367-373.
[17]Lu, Shanping, H.Fujii, H.Sugiyama, and K. Nogi. "Mechanism and Optimization of Oxide Fluxes for Deep Penetration in Gas Tungsten arc Welding." Metallurgical and Materials Transactions A, 2003, Vol. 34, No. 9, pp 1901-1907.
[18]M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, “Electrical conductivity and optical properties of ZnO nanostructured thin film,” Applied Surface Science. Vol.255, 2009, pp 4491–4496.
[19]P.H.Miller "The Electrical Conductivity Of Zinc Oxide ", 1941 ,http://dx.doi.org/10.1103/PhysRev.60.890.
[20]T. Chern, K. Tseng, H. Tsai, “Study of the characteristics of duplex stainless steel activated tungsten inert gas welds,” Materials and Design. Vol.32, 2011, pp.255–263.
[21]LU Shanping , F Hidetoshi , A Hiroyuki , T Manabu , N kiyoshi .  Marangoni Convection and Welding Penetration in A-TIG Welding , Trans Of  JWRI , Vol,32 , 2003.
[22]H. Fujii , T. Sato , S. Lu,, K. Nogi ,  Development of an advanced A-TIG (AA-TIG) welding method by control of Marangoni convection , Joining and Welding Research Institute , Osaka Univercity , Japan , 2008.
[23]Y.L. Xu , Z.B. Dong, Y.H. Wei, C.L. Yang , Marangoni convection and weld shape variation in A-TIG welding process , Theoretical and Applied Fracture Mechanics , 2007 , pp 178-186.
[24]D.R.Gaskell, Introduction to the thermodynamics of materials, 4th ed, 1995.
[25]S.R. Lampman, ASM Handbook, V9 , 1990 , pp 265.
[26]K.H. Tseng and P.Y. Lin , UNS S31603 Stainless Steel Tungsten Inert Gas Welds Made with Microparticle and Nanoparticle Oxides , Institute of Materials Engineering, National Pingtung University of Science998, Woodhead, England,  pp 3–9.