بررسی کمی حساسیت به پارگی گرم در آلیاژهای (Al-9Si-Fe(Mn

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مواد و متالورژی، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)

2 فارغ التحصیل کارشناسی مهندسی متالورژی، گروه مهندسی مواد و متالورژی، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)

3 کارشناس ارشد آزمایشگاه متالوگرافی، گروه مهندسی مواد و متالورژی، دانشکده فنی و مهندسی، دانشگاه بین‌المللی امام خمینی (ره)

چکیده

در این تحقیق تاثیر ناخالصی آهن (5/0، 1، 5/1 و wt % 2) و بهسازی شیمیایی توسط منگنز (5/0=Mn/Fe) بر رفتار پارگی گرم آلیاژ 332F آلومینیم مورد بررسی و تحلیل قرار گرفته است. بر اساس نتایج حاصله، با افزایش غلظت آهن تا 5/0 درصد وزنی، به دلیل توزیع ظریف ترکیبات بین‌فلزی -Al5FeSi در نواحی بین‌دندریتی و پیرو آن بهبود استحکام دما بالای آلیاژ و توسعه ساختار دانه‌ای ریز و هم محور، مقاومت به پارگی گرم آلیاژ حدود 25 درصد بهبود می‌یابد. افزایش غلظت آهن تا حدود 2 درصد وزنی موجب افزایش ابعاد و کسر حجمی ترکیبات صفحه‌ای شکل بتا در زمینه شده و علاوه بر افت استحکام و انعطاف‌پذیری آلیاژ، به سبب کاهش سیالیت و انسداد مسیرهای تغذیه بین‌دندریتی مذاب، شرایط را برای ایجاد پارگی گرم مهیا نموده و شاخص حساسیت به پارگی گرم (HTS) به میزان قابل ملاحظه‌ای افزایش می‌یابد. با افزودن منگنز، -Al5FeSi به α-Al15(Fe,Mn)3Si2 با مورفولوژی حروف چینی، چندوجهی یا ستاره‌ای شکل تبدیل شده و با حذف اثرات مخرب فاز بتای صفحه‌ای، موجب بهبود خواص کششی و قابلیت تغذیه بین دندریتی مذاب می‌شود. تحت این شرایط، شاخص حساسیت به پارگی گرم در آلیاژهای بهسازی شده حاوی 5/0 و 1 درصد وزنی آهن به صفر رسیده و در مورد دو آلیاژ حاوی 5/1 و 2 درصد وزنی آهن به ترتیب حدود 50 و 40 درصد کاهش می‌یابد.

کلیدواژه‌ها


عنوان مقاله [English]

Quantitative investigation of hot tearing sensitivity in Al-9Si-Fe(Mn) alloys

نویسندگان [English]

  • Reza Taghiabadi 1
  • Mojtaba Jarahi 2
  • Marayam Nazari 3
1 Department of Materials Science and Metallurgy, Faculty of Engineering, Imam Khomeini International University
2 B.Sc. in Materials Science, Department of Materials Science and Metallurgy, Faculty of Engineering, Imam Khomeini International University
3 M.Sc. in Materials Science, Department of Materials Science and Metallurgy, Faculty of Engineering, Imam Khomeini International University
چکیده [English]

The effect of Fe addition (0.5, 1, 1.5 and 2 wt %) and Mn modification (Mn/Fe=0.5) on hot tearing behavior of F332 Al alloys was investigated. The results show that due to the formation of fine interdendritic -Al5FeSi platelets, Fe addition up to 0.5 wt% improves high temperature tensile properties and promotes the formation of equiaxed grains thereby increases the hot tearing resistance of the alloy by about 25%. Further addition of Fe up to 2 wt%, however, increases the size and volume fraction of -platelets, decreases the tensile properties, reduces the fluidity and interdendritic feeding and consequently substantially increases the hot tearing susceptibility (HTS). Mn addition, however, was shown that changes the morphology of -platelets to less harmful Chinese script, polyhedral or star-like α-Al15(Fe,Mn)3Si2 whereby improves the tensile properties and interdendritic feeding characteristic of the alloy. Therefore, the HTS value is decreased to zero for 0.5 and 1 wt% Fe alloys, but increased by 50 and 40 %, respectively in the case of 1.5 and 2 wt% Fe containing alloys.

کلیدواژه‌ها [English]

  • "Al-9Si"
  • "Hot tearing"
  • "Intermetallic"
  • "Iron"
  • "Manganese"
[1]     J.G. Kaufman, and E.L. Rooy, “Aluminum Alloy Castings: Properties, Processes and Applications”, ASM International, 1st Ed., USA, 2004.
[2]     J.R. Davis, “ASM Specialty Handbook, Aluminum and Aluminum Alloys”, ASM International, OH, USA, 1993.
[3]     A.H. Musfirah, and A.G. Jaharah, “Magnesium and Aluminum Alloys in Automotive Industry”, Journal of Applied Science Research, Vol. 8, pp. 4865-4875, 2012.
[4]     H.F. Bishop, C.G. Ackerlind, and W.S. Pellini, “Metallurgy and Mechanics of Hot Tearing” AFS Transaction, Vol. 60, pp. 818-833, 1952.
[5]     S. Li, K. Sadayappan, and D.Apelian, “Characterization of Hot Tearing in Al Cast Alloys: Methodology and Procedures”, International Journal of Cast Metals Research, Vol. 24, No. 2, pp. 88-95, 2011.
[6]     M.O. Pekguleryuz1, S. Lin, E. Ozbakir, D. Temur, and C. Aliravci, “Hot Tear Susceptibility of Aluminium–Silicon Binary Alloys”, International Journal of Cast Metals Research, Vol. 23, No. 5, pp. 310-320, 2010.
[7]     S. Lin, C. Aliravci, and M.O. Pekguleryuz, “Hot Tear Susceptibility of Aluminum Wrought Alloys and the Effect of Grain Refining”, Metallurgical and Materials Transaction, Vol. 38A, pp. 1056-1068, 2007.
[8]     J.A. Dantzig, and M. Rappaz, “Solidification”, EPFL Press, Italy, 2009.
[9]     J. Campbell, “Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design”, Butterworth Heinemann, UK, 2011.
[10] S. Bozorgi, K. Haberl, C. Kneissl, T. Pabel, and P. Schumacher, “Effect of Alloying Elements (Magnesium and Copper) on Hot Cracking Susceptibility of AlSi7MgCu-Alloys”, Shape Casting: The 4th International Symposium, TMS (The Minerals, Metals & Materials Society), 2011, pp. 113-120.
[11] Y.F. Guven and J.D. Hunt, “Hot Tearing in Aluminum Copper Alloys”, Cast Metals, Vol. 1, pp. 104-111, 1988.
[12] S. Li, and D. Apelian, “Hot Tearing of Aluminum Alloys-A Critical Literature Review”, International Journal of Metal Casting, Vol. 5, pp. 23-40, 2011.
[13] H. Nagaumi1, S. Suzuki1, T. Okane, and T. Umeda, “Effect of Iron Content on Hot Tearing of High-Strength Al-Mg-Si Alloy”, Materials Transactions, Vol. 47, No. 11, pp. 2821-2827, 2006.
[14] T.O. Mbuya, B.O. Odera, and S.P. Ng’ang’a, “Influence of Iron on Castability and Properties of Aluminium Silicon Alloys: Literature Review”, International Journal of Cast Metals Researches, Vol. 16, pp. 451-462, 2003.
[15] J.A. Taylor, “Iron-Containing Intermetallic Phases in Al-Si Based Casting Alloys”, Procedia Materials Science, Vol. 1, pp. 19–33, 2012.
[16] L. Wang, M. Makhlouf, and D. Apelian, “Aluminum Die Casting Alloys”, Aluminum Casting Research Laboratory, Worcester, 1993.
[17] D.N. Wang’ombe, E.E. Maube, S.M. Maranga and J.M. Kihiu, “Effect of Iron-Intermetallics on the Fluidity of Recycled Al-Si Cast Alloys”, Proceedings of the 2012 Mechanical Engineering Conference on Sustainable Research and Innovation, 2012, pp. 224-227.
[18] S. Oya, T. Fujii, F, Kato, and M. Ohtaki, “Solidified Structure and Hot Tearing of Al-4.5%. Cu and Al-4.5%Cu-5%Si Alloys Containing Various Additives“, Journal of Japan Institute of Light Metals, Vol. 34, No. 9, pp.511-516, 1984.
[19] N.A. Belov, and A.A. Aksenov, “Iron in Al alloys: Impurity and Alloying Elements”, Taylor & Francis Inc, New York, 2002.
[20] S.G. Shabestari, “The Effect of Iron and Manganese on the Formation of Intermetallic Compounds in Al-Si Alloys”, Materials Science and Engineering, Vol. A383, pp. 289-298, 2004.
[21] C.Y. Sun, and L.F. Mondolfo, “A clarification of the Phases Occurring in Al-rich Al-Fe-Si Alloys”, Journal of the Japan Institute of Metals and Materials, Vol. 95, pp. 384-399, 1967.
[22] L. Backerud, G. Chai, and J. Tamminen, “Solidification Characteristics of Aluminum Alloys, Vol. 2 Foundry Alloys, AFS SCANALUMINUM, USA, 1990.
[23] J. A. Taylor, G. B. Schaffer, and D. H. Stjohn, “The role of iron in the formation of porosity in Al-Si-Cu-based casting alloys, part II: Phase diagram approach”, Metallurgical and Materials Transaction, Vol. 30A, pp. 1651-1655, 1999.
[24] L. Zhang, and L. Damoah, “Current Technologies for Removal of Iron Form Aluminum Alloys”, Essential Readings in Light Metals, Cast Shop for Aluminum Production, Vol. 3, Edited by John Grandfield and D. G. Eskin, John Weily and Sons Inc., TMS, Canada, 2013, pp. 101-106.
[25] D. Stefanescu, “Science and Engineering of Casting Solidification”, 3rd. Ed., Springer, Switzerland, 2015.
[26] M. Easton1, H. Wang, J. Grandfield, D. StJohn, and E. Sweet, “An Analysis of the Effect of Grain Refinement on the Hot Tearing of Aluminium Alloys”, Proceedings of the 9th International Conference on Aluminium Alloys, 2004, pp. 224-229.
[27] L.A. Narayanan, F.H. Samuel, and J.E. Gruzleski, “Crystallization Behavior of Iron-Containing Intermetallic Compounds in 319 Aluminum Alloy”, Metallurgical and Materials Transaction, Vol. 25A, pp. 1761-1773, 1994.
[28] H. Kim, T.Y Park, W. Han, and H.M. Lee, “Effect of Mn on the crystal structure of alpha-Al(Mn,Fe)Si particles in A356 alloy”, Journal of Crystal Growth, Vol. 291, pp. 207-211, 2006.
[29] B.K. Prasad, K. Venkateswarlu, O.P. Modi, A.K. Jha, S. Das, R. Dasgupta, and A.H. Yegneswaran, “Sliding Wear Behavior of Some Al-Si Alloys: Role of Shape and Size of Si Particles and Test Conditions”, Metallurgical and Materials Transaction, Vol. 29A, pp. 2747-2752, 1998.
[30] E. Rincon, H.F. Lopez, M.M. Cisneros, H. Mancha, and M.A. Cisneros, “Effect of Temperature on the Tensile Properties of an As-Cast Aluminum Alloy A319”, Materials Science and Engineering, Vol. 452-453A, pp. 682-687, 2007.
[31] M. Brosnan, and S. Shivkumar, “Elevated-Temperature Tensile Properties and Fracture Behavior of A356 Castings”, AFS Transaction, Vol. 109, pp. 727-737, 1995.